terclim by ICS banner
IVES 9 IVES Conference Series 9 Selection of beneficial endophytes from Sicilian grapevine germplasm 

Selection of beneficial endophytes from Sicilian grapevine germplasm 

Abstract

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT. In particular, the research aimed to select consortia of endophytic bacteria and/or fungi able to improve the grapevine tolerance to drought. To this aim, vine leaves were harvested during two vegetative seasons, from local varieties subjected to a long-lasting adaptation to arid conditions without regular irrigation. A wide diversity of genera and species belonging to different microbial phyla was isolated on artificial media (NA and PDA) from surface-sterilized grapevine leaves. Selected fungal and bacterial isolates were identified by molecular barcoding based on ITS and 16S rDNA sequences, respectively. Overall, bacterial endophytes were isolated in higher numbers than fungal ones. In 2022, a higher abundance of fungal colonies was isolated at the end of the growing season, suggesting a seasonal dynamic of the microbiota composition. Some of the selected isolates belong to species already known as PGP endophytes of crops, including grapevine. Preliminary in vitro experiments confirmed that those strains can increase the concentration of auxins, ammonium and soluble phosphate.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dalila Crucitti1*, Irene Doro2, Michela Zottini2, Alessandra Tondello3, Andrea Squartini3, Roberto De Michele1, Francesco Carimi1, Davide Pacifico1

1 IBBR CNR – Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146 Palermo
2 Department of Biology, Università degli Studi di Padova, via U. Bassi 58b, 35131 Padova, Italy
3 Department of Agronomy, Animals, Food, Natural Resources, and Environment, DAFNAE Università degli Studi di Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy

Contact the author*

Keywords

drought stress, culturable endophytes, bacteria, fungi

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Comparison of two procedures to measure foamability from sparkling base wines supplemented with acacia gums

In sparkling wines, foam is a relevant aspect whose measurement method could affect the results. The shaking test (ST) is a simple method measuring foamability1,2

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Genomic perspective of Lachancea thermotolerans in wine bioacidification

We have sequenced two commercial strains of Lachancea thermotolerans (Lt) from the company Lallemand: Laktia™ y Blizz™.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.