terclim by ICS banner
IVES 9 IVES Conference Series 9 Selection of beneficial endophytes from Sicilian grapevine germplasm 

Selection of beneficial endophytes from Sicilian grapevine germplasm 

Abstract

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT. In particular, the research aimed to select consortia of endophytic bacteria and/or fungi able to improve the grapevine tolerance to drought. To this aim, vine leaves were harvested during two vegetative seasons, from local varieties subjected to a long-lasting adaptation to arid conditions without regular irrigation. A wide diversity of genera and species belonging to different microbial phyla was isolated on artificial media (NA and PDA) from surface-sterilized grapevine leaves. Selected fungal and bacterial isolates were identified by molecular barcoding based on ITS and 16S rDNA sequences, respectively. Overall, bacterial endophytes were isolated in higher numbers than fungal ones. In 2022, a higher abundance of fungal colonies was isolated at the end of the growing season, suggesting a seasonal dynamic of the microbiota composition. Some of the selected isolates belong to species already known as PGP endophytes of crops, including grapevine. Preliminary in vitro experiments confirmed that those strains can increase the concentration of auxins, ammonium and soluble phosphate.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dalila Crucitti1*, Irene Doro2, Michela Zottini2, Alessandra Tondello3, Andrea Squartini3, Roberto De Michele1, Francesco Carimi1, Davide Pacifico1

1 IBBR CNR – Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146 Palermo
2 Department of Biology, Università degli Studi di Padova, via U. Bassi 58b, 35131 Padova, Italy
3 Department of Agronomy, Animals, Food, Natural Resources, and Environment, DAFNAE Università degli Studi di Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy

Contact the author*

Keywords

drought stress, culturable endophytes, bacteria, fungi

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).