terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins


Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5]. The aim of this work was to study the degradation kinetics of the five grape anthocyanins by laccase from Botrytis cinerea. In individual solution, the three anthocyanins with 3 substituents in the B-ring: petunidin, delphinidin and malvidin were degraded much faster than those of 2 substituents, cyanidin and especially peonidin that is even not degraded by laccase. In contrast, in an equimolar solution of the 5 anthocyanins, the degradation kinetics of all anthocyanins was more similar and all of them, even peonidin were degraded. This different kinetics behavior of the five anthocyanins when they are alone or in mixture may be probably due to the fact that, after the formation of the primary quinones, chemical polymerization occurs with other phenols without the action of laccase. Consequently, the less reactive anthocyanins, such as peonidin and cyanidin 3-O-glucosides, can be used to form polymers without the action of laccase. This effect would probably also occur in the presence of other phenols, which could generate insoluble polymers that would cause oxidasic haze.

Acknowledgements: This research was funded by CICYT project RTI2018-095658-B-C33.


1)  Li H. et al. (2008) Mechanisms of oxidative browning of wine. Food. Chem., 108:1-13, DOI 10.1016/j.foodchem.2007.10.065

2)  Friedman M (1996) Food browning and its prevention: an overview. J. Agric. Food Chem., 44:631-653, DOI 10.1021/JF950394R

3)  du Toit WJ. et al. (2006) Oxygen in must and wine: a review. S. Afr. J. Enol. Vitic., 27:76-94, DOI 10.21548/27-1-1610

4)  Ky I. et al. (2012) Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Aust. J. Grape Wine Res., 18:215-226, DOI 10.1111/j.1755-0238.2012.00191.x

5)  Ribéreau-Gayon P. et al. (2006) The microbiology of wine and vinifications, 2nd edn. John Wiley & Sons, Chichester, pp 193–221, ISBN-13:978-0-470-01034-1(HB)


Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article


Pol Giménez1, Arnau Just-Borràs1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*


laccase, Botrytis cinerea, anthocyanins, browning, oxidasic haze


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).