terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)


In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.


Candidate clones (30 cv. Tempranillo; 13 cv. Graciano) were planted in 2016 in an experimental vineyard in La Rioja (Spain). A complete randomized block design was set up with four replicates of 10 plants. In 2020, 2021 and 2022 clones were evaluated with DUALEX® handheld sensor at flowering and veraison. DUALEX® is a leafclip meter that can accurately determine the chlorophyll and flavonols contents in leaves. It also provides the NBI® (Nitrogen Balanced Index), a good indicator of plant nitrogen status. Besides, in 2022, clones were measured with Crop Circle ACS 430 TM handheld sensor to determine NDVI index (vigour) of each clon. These sensors are mainly used for abiotic stress studies.


These optical sensors were able to identify significant differences between the biotypes, proving to be interesting tools for fast phenotyping of grapevine physiological and vegetative characteristics. The results obtained confirmed therefore the huge wide genetic variability existing between the clones. The diversity found in the levels of chlorophylls, flavonols and nitrogen could be used in future clonal selection programs.


Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster


Luis Rivacoba*, Elisa Baroja, Ignacio Martín, Sergio Ibáñez, Javier Portu

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Finca La Grajera, Ctra. de Burgos Km. 6, Logroño, La Rioja 26007, Spain

Contact the author*


intra-varietal diversity, climate change, clonal selection, genetic erosion, chlorophyll, NBI


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.