Terroir 2016 banner
IVES 9 IVES Conference Series 9 Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Abstract

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA. For three vintages we implemented a differential harvest and experimental winemaking based on soil zoning and noted that each zone produces unique wines despite the fact that both consist of the same rootstock, clone, row orientation, trellis system, vine age and undergo the same farming practices.

Significant differences observed between the two lots, particularly potassium (K+) levels and pH of the fruit and wine, have been consistent from vintage to vintage. Our findings suggest a relationship between soil physical characteristics, site hydrology, soil chemistry, nutrient levels in the vine and fruit, and wine chemistry (specifically K+ and pH).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Ernest BEASLEY IV, MS, CPG (1), Benoit PINEAU (2), Lucie MORTON (3)

(1) HydroGeo Environmental, LLC, 418 East Main Street, Charlottesville, Virginia 22902
(2) Pollak Vineyards, 330 Newtown Road, Greenwood, Virginia 22943
(3) Vitipiont International Research Centre, PO Box 5607, Charlottesville, Virginia 22905

Contact the author

Keywords

geophysics, viticulture, terroir, soil, management zoning, potassium, wine, precision viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.