Terroir 2016 banner
IVES 9 IVES Conference Series 9 Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Abstract

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA. For three vintages we implemented a differential harvest and experimental winemaking based on soil zoning and noted that each zone produces unique wines despite the fact that both consist of the same rootstock, clone, row orientation, trellis system, vine age and undergo the same farming practices.

Significant differences observed between the two lots, particularly potassium (K+) levels and pH of the fruit and wine, have been consistent from vintage to vintage. Our findings suggest a relationship between soil physical characteristics, site hydrology, soil chemistry, nutrient levels in the vine and fruit, and wine chemistry (specifically K+ and pH).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Ernest BEASLEY IV, MS, CPG (1), Benoit PINEAU (2), Lucie MORTON (3)

(1) HydroGeo Environmental, LLC, 418 East Main Street, Charlottesville, Virginia 22902
(2) Pollak Vineyards, 330 Newtown Road, Greenwood, Virginia 22943
(3) Vitipiont International Research Centre, PO Box 5607, Charlottesville, Virginia 22905

Contact the author

Keywords

geophysics, viticulture, terroir, soil, management zoning, potassium, wine, precision viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Local adaptation tools to ensure the viticultural sustainability in a changing climate

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.