Terroir 2016 banner
IVES 9 IVES Conference Series 9 Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Abstract

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA. For three vintages we implemented a differential harvest and experimental winemaking based on soil zoning and noted that each zone produces unique wines despite the fact that both consist of the same rootstock, clone, row orientation, trellis system, vine age and undergo the same farming practices.

Significant differences observed between the two lots, particularly potassium (K+) levels and pH of the fruit and wine, have been consistent from vintage to vintage. Our findings suggest a relationship between soil physical characteristics, site hydrology, soil chemistry, nutrient levels in the vine and fruit, and wine chemistry (specifically K+ and pH).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Ernest BEASLEY IV, MS, CPG (1), Benoit PINEAU (2), Lucie MORTON (3)

(1) HydroGeo Environmental, LLC, 418 East Main Street, Charlottesville, Virginia 22902
(2) Pollak Vineyards, 330 Newtown Road, Greenwood, Virginia 22943
(3) Vitipiont International Research Centre, PO Box 5607, Charlottesville, Virginia 22905

Contact the author

Keywords

geophysics, viticulture, terroir, soil, management zoning, potassium, wine, precision viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Managing nitrogen balance in cover-cropped vineyard

In this audio recording of the IVES science meeting 2022, Thibaut Verdenal (Agroscope, Pully, Switzerland) speaks about managing nitrogen balance in cover-cropped vineyard. This presentation is based on an original article accessible for free on OENO One.

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product).