Terroir 2016 banner
IVES 9 IVES Conference Series 9 Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Abstract

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA. For three vintages we implemented a differential harvest and experimental winemaking based on soil zoning and noted that each zone produces unique wines despite the fact that both consist of the same rootstock, clone, row orientation, trellis system, vine age and undergo the same farming practices.

Significant differences observed between the two lots, particularly potassium (K+) levels and pH of the fruit and wine, have been consistent from vintage to vintage. Our findings suggest a relationship between soil physical characteristics, site hydrology, soil chemistry, nutrient levels in the vine and fruit, and wine chemistry (specifically K+ and pH).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Ernest BEASLEY IV, MS, CPG (1), Benoit PINEAU (2), Lucie MORTON (3)

(1) HydroGeo Environmental, LLC, 418 East Main Street, Charlottesville, Virginia 22902
(2) Pollak Vineyards, 330 Newtown Road, Greenwood, Virginia 22943
(3) Vitipiont International Research Centre, PO Box 5607, Charlottesville, Virginia 22905

Contact the author

Keywords

geophysics, viticulture, terroir, soil, management zoning, potassium, wine, precision viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported