terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Abstract

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles. In our study we showed that while VviEPFL9-1 is expressed only in the apex, VviEPFL9-2 is expressed both in the apex and in mature leaves along the plant axis and is significantly repressed by ABA. To support experimental data, an in-silico transcriptomic analysis has been carried out using publicly available datasets. In addition, both genes were functionally characterized using knock-out (KO) mutants generated via CRISPR/Cas9. Leaf stomatal density and gas exchange parameters were significantly different between ‘Sugraone’ WT plants and VviEPFL9-2 KO lines, whereas the differences were negligible between WT and VviEPFL9-1 KO lines. Moreover, a water stress experiment was carried out to deeply compare the physiology of edited lines and WT plants under drought conditions. Our results suggest that VviEPFL9 paralogs have distinct roles in determining stomatal plasticity during leaf growth, and that VviEPFL9-2 may be considered a key target to increase grapevine resilience to water deficiency.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Umar Shahbaz1,2, Pierre Videau3, Katerina Labonova3, David Navarro-Payá4, Alvaro Vidal1,2, José Tomás Matus4, Mickael Malnoy1, Olivier Zekri3, Fabio Fiorani5, Michele Faralli2, Lorenza Dalla Costa1*

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
3 Novatech, Mercier Groupe, Le Champ des Noels, France
4 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain
5 Institute of Bio- and Geo-Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Contact the author*

Keywords

Vitis vinifera, Epidermal Patterning Factors, CRISPR/Cas9, gas exchange, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

La haie bocagère comme critère de zonage à l’échelle parcellaire

In the French AOCs, the production area of ​​the raw material can be subject to plot delimitation based on criteria of physical environment and use. On the other hand, many environmental zonings are developing and the AOCs are called upon include provisions relating to these concerns. Hedges, through their effects on local changes in the regional climate and on functional biodiversity, can impact the functioning of vines and orchards. It is for this reason that their consideration as a delimitation criterion is envisaged.

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.