terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Abstract

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles. In our study we showed that while VviEPFL9-1 is expressed only in the apex, VviEPFL9-2 is expressed both in the apex and in mature leaves along the plant axis and is significantly repressed by ABA. To support experimental data, an in-silico transcriptomic analysis has been carried out using publicly available datasets. In addition, both genes were functionally characterized using knock-out (KO) mutants generated via CRISPR/Cas9. Leaf stomatal density and gas exchange parameters were significantly different between ‘Sugraone’ WT plants and VviEPFL9-2 KO lines, whereas the differences were negligible between WT and VviEPFL9-1 KO lines. Moreover, a water stress experiment was carried out to deeply compare the physiology of edited lines and WT plants under drought conditions. Our results suggest that VviEPFL9 paralogs have distinct roles in determining stomatal plasticity during leaf growth, and that VviEPFL9-2 may be considered a key target to increase grapevine resilience to water deficiency.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Umar Shahbaz1,2, Pierre Videau3, Katerina Labonova3, David Navarro-Payá4, Alvaro Vidal1,2, José Tomás Matus4, Mickael Malnoy1, Olivier Zekri3, Fabio Fiorani5, Michele Faralli2, Lorenza Dalla Costa1*

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
3 Novatech, Mercier Groupe, Le Champ des Noels, France
4 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain
5 Institute of Bio- and Geo-Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Contact the author*

Keywords

Vitis vinifera, Epidermal Patterning Factors, CRISPR/Cas9, gas exchange, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.