terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Abstract

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles. In our study we showed that while VviEPFL9-1 is expressed only in the apex, VviEPFL9-2 is expressed both in the apex and in mature leaves along the plant axis and is significantly repressed by ABA. To support experimental data, an in-silico transcriptomic analysis has been carried out using publicly available datasets. In addition, both genes were functionally characterized using knock-out (KO) mutants generated via CRISPR/Cas9. Leaf stomatal density and gas exchange parameters were significantly different between ‘Sugraone’ WT plants and VviEPFL9-2 KO lines, whereas the differences were negligible between WT and VviEPFL9-1 KO lines. Moreover, a water stress experiment was carried out to deeply compare the physiology of edited lines and WT plants under drought conditions. Our results suggest that VviEPFL9 paralogs have distinct roles in determining stomatal plasticity during leaf growth, and that VviEPFL9-2 may be considered a key target to increase grapevine resilience to water deficiency.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Umar Shahbaz1,2, Pierre Videau3, Katerina Labonova3, David Navarro-Payá4, Alvaro Vidal1,2, José Tomás Matus4, Mickael Malnoy1, Olivier Zekri3, Fabio Fiorani5, Michele Faralli2, Lorenza Dalla Costa1*

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
3 Novatech, Mercier Groupe, Le Champ des Noels, France
4 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain
5 Institute of Bio- and Geo-Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Contact the author*

Keywords

Vitis vinifera, Epidermal Patterning Factors, CRISPR/Cas9, gas exchange, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.