terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Abstract

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles. In our study we showed that while VviEPFL9-1 is expressed only in the apex, VviEPFL9-2 is expressed both in the apex and in mature leaves along the plant axis and is significantly repressed by ABA. To support experimental data, an in-silico transcriptomic analysis has been carried out using publicly available datasets. In addition, both genes were functionally characterized using knock-out (KO) mutants generated via CRISPR/Cas9. Leaf stomatal density and gas exchange parameters were significantly different between ‘Sugraone’ WT plants and VviEPFL9-2 KO lines, whereas the differences were negligible between WT and VviEPFL9-1 KO lines. Moreover, a water stress experiment was carried out to deeply compare the physiology of edited lines and WT plants under drought conditions. Our results suggest that VviEPFL9 paralogs have distinct roles in determining stomatal plasticity during leaf growth, and that VviEPFL9-2 may be considered a key target to increase grapevine resilience to water deficiency.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Umar Shahbaz1,2, Pierre Videau3, Katerina Labonova3, David Navarro-Payá4, Alvaro Vidal1,2, José Tomás Matus4, Mickael Malnoy1, Olivier Zekri3, Fabio Fiorani5, Michele Faralli2, Lorenza Dalla Costa1*

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
3 Novatech, Mercier Groupe, Le Champ des Noels, France
4 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain
5 Institute of Bio- and Geo-Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Contact the author*

Keywords

Vitis vinifera, Epidermal Patterning Factors, CRISPR/Cas9, gas exchange, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

How to develop strategies of adaptation to climate change based on a foresight exercise?

Prospective studies raise a real intellectual interest for those who contribute to them or take cognizance of it. But they are often considered too difficult to operationalize

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Identifying research opportunities at Douro Demarcated Region

The Douro Demarcated Region, in Northern Portugal, offers outstanding wines with unique characteristics. Due to the today’s globalized marketplace, local producers often need to further develop their cultivation techniques to remain competitive. The Association of Viticultural Development in the Douro Valley (ADVID) works as a unit of experimentation, offering services and training to meet the demands of the Douro’s vitiviniculturists.

The geological and geomorphological events that determine the soil functional characters of a terroir

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.

Enhancing sustainability in viticulture through digital technologies: A case study from Smyrnakis winery

The integration of digital technologies in vineyard management offers substantial opportunities for enhancing sustainability, efficiency, and grape quality.