terclim by ICS banner
IVES 9 IVES Conference Series 9 Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Abstract

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens. Alongside early phenotypic characterisation, whole-genome genotyping and epigenotyping is being conducted using nanopore sequencing. To facilitate this, we produced a phased diploid telomere-to-telomere (T2T) assembly of the clone progenitor. Each 500 Mb haplotype exhibits over 99% completeness and accuracy (QV ~60), with genic and repetitive elements annotated.

To evaluate the robustness of methylation signals to experimental parameters, we used low-coverage nanopore skim sequencing. Genomic and epigenetic variations in New Zealand’s commercial germplasm were similarly characterised. Preliminary analysis of the initial clone set promises insights into mutational processes operating in this collection, which we expect to be dominated by transposable element movement and epigenetic dysregulation.

This research aims not only to enrich the clonal diversity for future New Zealand viticulture but also to shed light on aspects of transposon mutagenesis, epigenetic variability, and the function of mutated genes. It is anticipated that these findings will contribute to crop improvement efforts both in New Zealand and internationally, by advancing the understanding of somatic variability and epigenomics in agriculture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Darrell Lizamore1*, Annabel Whibley1, Bhanupratap Vanga1, Cen Liau1, Philippa Barrell2, Chris Winefield3, Solomon Wante1, Amy Hill1, Ellie Bradley1

Grapevine Improvement Team, Bragato Research Institute, Lincoln, New Zealand
2 Plant and Food Research Ltd., Lincoln, New Zealand
3 Dept. Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand

Contact the author*

Keywords

somatic mutations, transposable elements, nanopore sequencing, epigenetics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Background: Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Physiological responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

Challenging conditions created by limited water supply and changes in the climate require an understanding of the physiological status of table grapes along the whole value chain. This is critical to develop tools for regulatory management of growth balances and grape quality. This study aimed to determine the impact of different amounts of water and an altered micro-climate (complete covering of vineyards with plastic) on the physiological reaction of the grapevine during the growth season.

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.