terclim by ICS banner
IVES 9 IVES Conference Series 9 Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Abstract

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens. Alongside early phenotypic characterisation, whole-genome genotyping and epigenotyping is being conducted using nanopore sequencing. To facilitate this, we produced a phased diploid telomere-to-telomere (T2T) assembly of the clone progenitor. Each 500 Mb haplotype exhibits over 99% completeness and accuracy (QV ~60), with genic and repetitive elements annotated.

To evaluate the robustness of methylation signals to experimental parameters, we used low-coverage nanopore skim sequencing. Genomic and epigenetic variations in New Zealand’s commercial germplasm were similarly characterised. Preliminary analysis of the initial clone set promises insights into mutational processes operating in this collection, which we expect to be dominated by transposable element movement and epigenetic dysregulation.

This research aims not only to enrich the clonal diversity for future New Zealand viticulture but also to shed light on aspects of transposon mutagenesis, epigenetic variability, and the function of mutated genes. It is anticipated that these findings will contribute to crop improvement efforts both in New Zealand and internationally, by advancing the understanding of somatic variability and epigenomics in agriculture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Darrell Lizamore1*, Annabel Whibley1, Bhanupratap Vanga1, Cen Liau1, Philippa Barrell2, Chris Winefield3, Solomon Wante1, Amy Hill1, Ellie Bradley1

Grapevine Improvement Team, Bragato Research Institute, Lincoln, New Zealand
2 Plant and Food Research Ltd., Lincoln, New Zealand
3 Dept. Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand

Contact the author*

Keywords

somatic mutations, transposable elements, nanopore sequencing, epigenetics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Grape cane is a viticultural by-product that is currently underused or not used at all. Therefore, it bears a high potential for valorization due to the presence of anti-microbially active stilbenoids, being biologically relevant for plant defense. These compounds are highly interesting for applications in the agricultural sector as well as for the food and feed industry.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.