terclim by ICS banner
IVES 9 IVES Conference Series 9 Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Abstract

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens. Alongside early phenotypic characterisation, whole-genome genotyping and epigenotyping is being conducted using nanopore sequencing. To facilitate this, we produced a phased diploid telomere-to-telomere (T2T) assembly of the clone progenitor. Each 500 Mb haplotype exhibits over 99% completeness and accuracy (QV ~60), with genic and repetitive elements annotated.

To evaluate the robustness of methylation signals to experimental parameters, we used low-coverage nanopore skim sequencing. Genomic and epigenetic variations in New Zealand’s commercial germplasm were similarly characterised. Preliminary analysis of the initial clone set promises insights into mutational processes operating in this collection, which we expect to be dominated by transposable element movement and epigenetic dysregulation.

This research aims not only to enrich the clonal diversity for future New Zealand viticulture but also to shed light on aspects of transposon mutagenesis, epigenetic variability, and the function of mutated genes. It is anticipated that these findings will contribute to crop improvement efforts both in New Zealand and internationally, by advancing the understanding of somatic variability and epigenomics in agriculture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Darrell Lizamore1*, Annabel Whibley1, Bhanupratap Vanga1, Cen Liau1, Philippa Barrell2, Chris Winefield3, Solomon Wante1, Amy Hill1, Ellie Bradley1

Grapevine Improvement Team, Bragato Research Institute, Lincoln, New Zealand
2 Plant and Food Research Ltd., Lincoln, New Zealand
3 Dept. Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand

Contact the author*

Keywords

somatic mutations, transposable elements, nanopore sequencing, epigenetics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Landscapes of the wine: the four seasons of herault

Les paysages participent à l’identité des vins de l’Hérault, avec une grande richesse de diversité. Leur observation, au travers des quatre saisons, s’appuie sur deux dimensions primordiales : la genèse de leur construction par l’homme et l’esthétique. L’hiver est la saison la plus favorable au décryptage de ce vignoble étagé, du littoral méditerranéen aux premières pentes du Massif Central; il permet de lire l’histoire des stratégies viticoles des vignerons. Les autres saisons sensibilisent plus à la beauté de vignobles dans des écrins de végétation typiquement méditerranéenne. La multiplicité des pratiques culturales et des cépages contribue à cet attrait. L’incitation au parcours, en toute saison, est très forte grâce au réseau des routes et des chemins de vigne.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

New grape varieties with several resistance loci towards powdery and downy mildew allows to significantly reduce the use of fungicides