terclim by ICS banner
IVES 9 IVES Conference Series 9 Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Abstract

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens. Alongside early phenotypic characterisation, whole-genome genotyping and epigenotyping is being conducted using nanopore sequencing. To facilitate this, we produced a phased diploid telomere-to-telomere (T2T) assembly of the clone progenitor. Each 500 Mb haplotype exhibits over 99% completeness and accuracy (QV ~60), with genic and repetitive elements annotated.

To evaluate the robustness of methylation signals to experimental parameters, we used low-coverage nanopore skim sequencing. Genomic and epigenetic variations in New Zealand’s commercial germplasm were similarly characterised. Preliminary analysis of the initial clone set promises insights into mutational processes operating in this collection, which we expect to be dominated by transposable element movement and epigenetic dysregulation.

This research aims not only to enrich the clonal diversity for future New Zealand viticulture but also to shed light on aspects of transposon mutagenesis, epigenetic variability, and the function of mutated genes. It is anticipated that these findings will contribute to crop improvement efforts both in New Zealand and internationally, by advancing the understanding of somatic variability and epigenomics in agriculture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Darrell Lizamore1*, Annabel Whibley1, Bhanupratap Vanga1, Cen Liau1, Philippa Barrell2, Chris Winefield3, Solomon Wante1, Amy Hill1, Ellie Bradley1

Grapevine Improvement Team, Bragato Research Institute, Lincoln, New Zealand
2 Plant and Food Research Ltd., Lincoln, New Zealand
3 Dept. Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand

Contact the author*

Keywords

somatic mutations, transposable elements, nanopore sequencing, epigenetics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Brettanomyces bruxellensis and off-odours: genetic and proteomic approaches to unravel the molecular mechanism of ethyl-phenols production

Brettanomyces/Dekkera yeasts in wine are able to produce various spoilage compounds that are, at high concentration, detrimental to wine quality. The principal spoiler compounds associated with Brettanomyces spp. are vinyl and ethyl-phenols that are responsible for off- odours described as “animal”, “medicinal”, “sweaty leather”, “barnyard”, “spicy” and “clove-like”.

Water retention properties of viticultural calcisols from D. O. P. Valdepeñas (Spain)

A good knowledge of the soil physicochemical properties, as well as its ability to retain and put the necessary water available to the plants, is essential when it comes at the design of an irrigation plan.

Impacts of climate change on wine producer countries located north of the wine belt

Climate change poses significant challenges to the global wine sector, with cool-climate countries particularly vulnerable to its effects. The research employs a panel data analysis to investigate the impact of climate change on the wine industry in 66 countries, focusing on 11 cool-climate countries located north of the wine belt in the northern hemisphere. Utilizing data from OIV, FAO and climatic statistics from the climate change knowledge portal of the world bank spanning from 1961 to 2020, the research examines the relationship between temperature, precipitation, and wine production.

Zonazione e vitigni autoctoni nel sud della Basilicata: metodologie integrate per la caratterizzazione di ambienti di elezione di biotipi storici finalizzati a vini di territorio nella DOC “Terre dell’Alta Val d’Agri”

I territori della DOC “Terre dell’Alta Val d’Agri”, a Sud della regione Basilicata, si caratterizzano per una elevata biodiversità autoctona autoselezionatesi su ambienti ecologicamente ben definiti,

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.