terclim by ICS banner
IVES 9 IVES Conference Series 9 DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Abstract

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential. By targeting the phytoene desaturase gene as visual editing proof, we developed a genome editing and regeneration protocol to produce transgene-free grapevine plants exploiting the lipofectamine–mediated delivery of CRISPR–Cas9 ribonucleoproteins into protoplasts. We regenerated edited grapevines of Vitis vinifera‘Nebbiolo’, a cultivar extremely recalcitrant to in vitro regeneration and at the basis of outstanding quality wines, such as ‘Barolo’ and ‘Barbaresco’. Successful editing was confirmed by a combination of approaches: HRM, Sanger and amplicon deep sequencing, phenotype visualization. We then exploited the method to silence two micro(mi)RNAs involved in biotic stress responses: vv-miR482, which is conserved in different species, and the grapevine-specific vv-miR3623. Since NBS-LRR disease-resistance genes are the targets of those miRNAs, the objective is to regenerate vines with a broad-spectrum level of plant tolerance/resistance to different pathogens. The developed strategy could be extended to other important wine grape varieties and recalcitrant woody species.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Giorgio Gambino1, Floriana Nuzzo1, Amedeo Moine1, Walter Chitarra1,2, Chiara Pagliarani1, Annalisa Petrelli3, Paolo Boccacci1, Andrea Delliri1, Riccardo Velasco2, Luca Nerva1,2, Irene Perrone1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)
3 Open Lab – Department of Veterinary Sciences, University of Turin (DSV-UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy

Contact the author*

Keywords

genome editing, protoplast regeneration, lipofectamines, microRNAs, biotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.