terclim by ICS banner
IVES 9 IVES Conference Series 9 DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Abstract

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential. By targeting the phytoene desaturase gene as visual editing proof, we developed a genome editing and regeneration protocol to produce transgene-free grapevine plants exploiting the lipofectamine–mediated delivery of CRISPR–Cas9 ribonucleoproteins into protoplasts. We regenerated edited grapevines of Vitis vinifera‘Nebbiolo’, a cultivar extremely recalcitrant to in vitro regeneration and at the basis of outstanding quality wines, such as ‘Barolo’ and ‘Barbaresco’. Successful editing was confirmed by a combination of approaches: HRM, Sanger and amplicon deep sequencing, phenotype visualization. We then exploited the method to silence two micro(mi)RNAs involved in biotic stress responses: vv-miR482, which is conserved in different species, and the grapevine-specific vv-miR3623. Since NBS-LRR disease-resistance genes are the targets of those miRNAs, the objective is to regenerate vines with a broad-spectrum level of plant tolerance/resistance to different pathogens. The developed strategy could be extended to other important wine grape varieties and recalcitrant woody species.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Giorgio Gambino1, Floriana Nuzzo1, Amedeo Moine1, Walter Chitarra1,2, Chiara Pagliarani1, Annalisa Petrelli3, Paolo Boccacci1, Andrea Delliri1, Riccardo Velasco2, Luca Nerva1,2, Irene Perrone1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)
3 Open Lab – Department of Veterinary Sciences, University of Turin (DSV-UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy

Contact the author*

Keywords

genome editing, protoplast regeneration, lipofectamines, microRNAs, biotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

New understanding on sulfites reactivity in wine

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release.

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite