terclim by ICS banner
IVES 9 IVES Conference Series 9 DNA-Free genome editing confers disease resistance in grapevine

DNA-Free genome editing confers disease resistance in grapevine

Abstract

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches. Instead, the advent of New Breeding Techniques, especially genome editing via the CRISPR/Cas9 system, presents a promising avenue for the development of tools suitable to mitigate the current viticulture challenges, including fungal diseases. We report the application of a DNA-free genome editing approach to induce targeted mutations in the VviMLO17, a gene associated with powdery mildew susceptibility in grapevine. CRISPR/Cas9 ribonucleoparticles were introduced into protoplasts isolated from embryogenic calli. Through protoplast regeneration, a homozygous edited grapevine plant mutated in the VviMLO17 gene was obtained. This mutation confers resistance to Erysiphe necator, as evidenced by phenotypic analyses that demonstrated a reduced susceptibility to pathogen attack. The success of DNA-free CRISPR/Cas9 application for the improvement of target traits establishes a foundation for promoting viticulture sustainability yet preserving the identity of the grapevine cultivars. This advancement aligns with market and legislative demands, paving the way for a resilient and environmentally conscious winegrowing system.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marianna Fasoli1, Edoardo Bertini2, Erica D’Incà2, Luca Cattaneo1, Stefania Zattoni1, Sara Lissandrini1, Clarissa Ciffolillo1, Annalisa Polverari1, Giovanni Battista Tornielli1,3, Sara Zenoni1*

1 Department of Biotechnology, University of Verona, Verona, Italy
2 EdiVite S.r.l., San Pietro Viminario, Padua, Italy
3 Current address: Department of Agronomy, Food, Natural Resources, Animals and the Environment., University of Padua, Padua, Italy

Contact the author*

Keywords

genome editing DNA-free, CRISPR/Cas9 system, protoplast regeneration, powdery mildew resistance, sustainable viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.