terclim by ICS banner
IVES 9 IVES Conference Series 9 DNA-Free genome editing confers disease resistance in grapevine

DNA-Free genome editing confers disease resistance in grapevine

Abstract

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches. Instead, the advent of New Breeding Techniques, especially genome editing via the CRISPR/Cas9 system, presents a promising avenue for the development of tools suitable to mitigate the current viticulture challenges, including fungal diseases. We report the application of a DNA-free genome editing approach to induce targeted mutations in the VviMLO17, a gene associated with powdery mildew susceptibility in grapevine. CRISPR/Cas9 ribonucleoparticles were introduced into protoplasts isolated from embryogenic calli. Through protoplast regeneration, a homozygous edited grapevine plant mutated in the VviMLO17 gene was obtained. This mutation confers resistance to Erysiphe necator, as evidenced by phenotypic analyses that demonstrated a reduced susceptibility to pathogen attack. The success of DNA-free CRISPR/Cas9 application for the improvement of target traits establishes a foundation for promoting viticulture sustainability yet preserving the identity of the grapevine cultivars. This advancement aligns with market and legislative demands, paving the way for a resilient and environmentally conscious winegrowing system.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marianna Fasoli1, Edoardo Bertini2, Erica D’Incà2, Luca Cattaneo1, Stefania Zattoni1, Sara Lissandrini1, Clarissa Ciffolillo1, Annalisa Polverari1, Giovanni Battista Tornielli1,3, Sara Zenoni1*

1 Department of Biotechnology, University of Verona, Verona, Italy
2 EdiVite S.r.l., San Pietro Viminario, Padua, Italy
3 Current address: Department of Agronomy, Food, Natural Resources, Animals and the Environment., University of Padua, Padua, Italy

Contact the author*

Keywords

genome editing DNA-free, CRISPR/Cas9 system, protoplast regeneration, powdery mildew resistance, sustainable viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The application of soil biological indicators to support soil conservation practices and landscape quality in viticulture

Le but de notre travail a été d’étudier l’influence de différents systèmes de la gestion du sol en viticulture sur des paramètres biologiques de sol comme indicateurs de la protection et de la qualité du sol. La conservation de sol est indispensable pour une viticulture durable et la protection du terroir. Nos résultats ont montré, que la matière

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc).

The Hungarian system of geographical indications and the preparation of product specifications

Following the 2008-2009 reform of the European Union’s common market organisation in wine all protected designations of origin and geographical indications were imposed to prepare a product specification that described the conditions of their use. In this paper, we describe this process and the Hungarian system of geographical indications.

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées