terclim by ICS banner
IVES 9 IVES Conference Series 9 DNA-Free genome editing confers disease resistance in grapevine

DNA-Free genome editing confers disease resistance in grapevine

Abstract

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches. Instead, the advent of New Breeding Techniques, especially genome editing via the CRISPR/Cas9 system, presents a promising avenue for the development of tools suitable to mitigate the current viticulture challenges, including fungal diseases. We report the application of a DNA-free genome editing approach to induce targeted mutations in the VviMLO17, a gene associated with powdery mildew susceptibility in grapevine. CRISPR/Cas9 ribonucleoparticles were introduced into protoplasts isolated from embryogenic calli. Through protoplast regeneration, a homozygous edited grapevine plant mutated in the VviMLO17 gene was obtained. This mutation confers resistance to Erysiphe necator, as evidenced by phenotypic analyses that demonstrated a reduced susceptibility to pathogen attack. The success of DNA-free CRISPR/Cas9 application for the improvement of target traits establishes a foundation for promoting viticulture sustainability yet preserving the identity of the grapevine cultivars. This advancement aligns with market and legislative demands, paving the way for a resilient and environmentally conscious winegrowing system.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marianna Fasoli1, Edoardo Bertini2, Erica D’Incà2, Luca Cattaneo1, Stefania Zattoni1, Sara Lissandrini1, Clarissa Ciffolillo1, Annalisa Polverari1, Giovanni Battista Tornielli1,3, Sara Zenoni1*

1 Department of Biotechnology, University of Verona, Verona, Italy
2 EdiVite S.r.l., San Pietro Viminario, Padua, Italy
3 Current address: Department of Agronomy, Food, Natural Resources, Animals and the Environment., University of Padua, Padua, Italy

Contact the author*

Keywords

genome editing DNA-free, CRISPR/Cas9 system, protoplast regeneration, powdery mildew resistance, sustainable viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.