terclim by ICS banner
IVES 9 IVES Conference Series 9 Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Abstract

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed. Three different DNA-based techniques, were used to verify mutations (RAPD, ISSR and SSR markers). We also estimated the ploidy levels of regenerants and differences were observed for 10% of Frappato regenerants that were tetraploid. The different ploidy levels induced several anatomical/morphological changes of the shoots, mature leaves and stomata, which were larger in tetraploid as compared to diploid regenerants. Also, the number of chloroplasts per guard cell pair was higher in tetraploids as compared to diploids; on the contrary, the stomatal index was lower in tetraploids than in diploids. These profound morphological alterations may influence a wide range of physiological processes related to adaptation to environmental stresses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Loredana Abbate1, Caterina Catalano1,2, Antonio Motisi1, Dalila Crucitti1, Francesco Carimi1 and Angela Carra1*

1 Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche Via Ugo La Malfa 153, 90146 Palermo, Italy
2 Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy

Contact the author*

Keywords

autopolyploidy, ploidy variability, somatic embryogenesis,  stomatal characteristics, grapevine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Correlation between stable isotopic composition of the fungus aspergillus niger and its growth substrate and the extracted chitin

Wine is one of the most consumed and appreciated beverages in the world. Due to the growing attention paid to consumer health, there is a continuous search for sustainable alternatives to common additives (such as sulfur dioxide) used to preserve wine. An example is represented by chitosan, the main derivative of chitin, approved for the treatment of must and wine since 2009 by the “international organization of vine and wine” (OIV/OENO 338a/2009) and by the european commission (EC Reg. No. 606/2009).

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.