terclim by ICS banner
IVES 9 IVES Conference Series 9 Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Abstract

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed. Three different DNA-based techniques, were used to verify mutations (RAPD, ISSR and SSR markers). We also estimated the ploidy levels of regenerants and differences were observed for 10% of Frappato regenerants that were tetraploid. The different ploidy levels induced several anatomical/morphological changes of the shoots, mature leaves and stomata, which were larger in tetraploid as compared to diploid regenerants. Also, the number of chloroplasts per guard cell pair was higher in tetraploids as compared to diploids; on the contrary, the stomatal index was lower in tetraploids than in diploids. These profound morphological alterations may influence a wide range of physiological processes related to adaptation to environmental stresses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Loredana Abbate1, Caterina Catalano1,2, Antonio Motisi1, Dalila Crucitti1, Francesco Carimi1 and Angela Carra1*

1 Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche Via Ugo La Malfa 153, 90146 Palermo, Italy
2 Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy

Contact the author*

Keywords

autopolyploidy, ploidy variability, somatic embryogenesis,  stomatal characteristics, grapevine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Studio per la caratterizzazione delle produzioni vitivinicole dell’area del Barbera d’Asti DOC

Il Barbera rappresenta sicuramente uno dei più importanti vitigni autoctoni del Piemonte occu­pando circa il 50% della superficie vitata regionale. Esso è ancora diffuso su un’area molto vasta, che si estende per oltre 200.000 ha, dando origine a diverse produzioni vinicole tutelate da denominazioni d’origine.

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.

Chemical systems behind wine aroma perception: overview, genesis and evolution

This talk presents a revision of our knowledge and understanding of the role played by the different aroma chemicals in the positive aroma attributes of wine. A systematic approach to classifying the different aroma chemicals of wine is presented .