terclim by ICS banner
IVES 9 IVES Conference Series 9 Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Abstract

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed. Three different DNA-based techniques, were used to verify mutations (RAPD, ISSR and SSR markers). We also estimated the ploidy levels of regenerants and differences were observed for 10% of Frappato regenerants that were tetraploid. The different ploidy levels induced several anatomical/morphological changes of the shoots, mature leaves and stomata, which were larger in tetraploid as compared to diploid regenerants. Also, the number of chloroplasts per guard cell pair was higher in tetraploids as compared to diploids; on the contrary, the stomatal index was lower in tetraploids than in diploids. These profound morphological alterations may influence a wide range of physiological processes related to adaptation to environmental stresses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Loredana Abbate1, Caterina Catalano1,2, Antonio Motisi1, Dalila Crucitti1, Francesco Carimi1 and Angela Carra1*

1 Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche Via Ugo La Malfa 153, 90146 Palermo, Italy
2 Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy

Contact the author*

Keywords

autopolyploidy, ploidy variability, somatic embryogenesis,  stomatal characteristics, grapevine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The impact of grazing by cattle on Vitis vinifera L. cv. Shiraz vegetative growth and metabolite profile

Context and purpose of the study. Globally, vineyard cultivation uses conventional methods to manage pests, diseases and increase yield.

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).