terclim by ICS banner
IVES 9 IVES Conference Series 9 Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Abstract

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed. Three different DNA-based techniques, were used to verify mutations (RAPD, ISSR and SSR markers). We also estimated the ploidy levels of regenerants and differences were observed for 10% of Frappato regenerants that were tetraploid. The different ploidy levels induced several anatomical/morphological changes of the shoots, mature leaves and stomata, which were larger in tetraploid as compared to diploid regenerants. Also, the number of chloroplasts per guard cell pair was higher in tetraploids as compared to diploids; on the contrary, the stomatal index was lower in tetraploids than in diploids. These profound morphological alterations may influence a wide range of physiological processes related to adaptation to environmental stresses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Loredana Abbate1, Caterina Catalano1,2, Antonio Motisi1, Dalila Crucitti1, Francesco Carimi1 and Angela Carra1*

1 Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche Via Ugo La Malfa 153, 90146 Palermo, Italy
2 Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy

Contact the author*

Keywords

autopolyploidy, ploidy variability, somatic embryogenesis,  stomatal characteristics, grapevine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.