terclim by ICS banner
IVES 9 IVES Conference Series 9 Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Abstract

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitroregeneration protocols, particularly through somatic embryogenesis (SE). This method has proven successful in some Vitis species, but its effectiveness varies due to the genotype-dependent nature of many cultivars. Moreover, protoplasts have proven to be particularly suitable for genome editing applications, but protoplasts regeneration remains generally considered inefficient in grapevine.
The focus of this study is to enhance in vitro plant regeneration protocols via SE and isolate and regenerate plants from protoplasts derived from embryogenic calli of the Corvina veronese, a variety economically important in Veneto region. Protoplasts will serve as a platform for DNA-free genome editing using CRISPR/Cas9 to target genes responsible for grapevine susceptibility to powdery and downy mildew. The study includes a preliminary phenotypic characterization of regenerated plants to assess whether gene editing or the regeneration process has influenced their morphology and behaviour compared to plants grown under standard conditions. This research aims to accelerate the development of grapevine varieties with improved traits, addressing the challenges posed by conventional breeding methods.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Clarissa Ciffolillo1*, Edoardo Bertini2, Stefania Zattoni1, Sara Lissandrini1, Sara Zenoni1, Giovanni Battista Tornielli1,3

1Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2Edivite s.r.l. San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova, Italy
3Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

Vitis vinifera, Corvina veronese, Somatic embryogenesis, Protoplasts, DNA-free genome editing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds

A terroir represents grouping of homogenous environmental units, or natural terroir units, based on the typicality of the products obtained. Identification and characterisation of terroirs depends on knowledge of environmental parameters, the functioning of the grapevine and characteristics of the final product, which must be placed in a spatial context.

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une