terclim by ICS banner
IVES 9 IVES Conference Series 9 Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Abstract

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitroregeneration protocols, particularly through somatic embryogenesis (SE). This method has proven successful in some Vitis species, but its effectiveness varies due to the genotype-dependent nature of many cultivars. Moreover, protoplasts have proven to be particularly suitable for genome editing applications, but protoplasts regeneration remains generally considered inefficient in grapevine.
The focus of this study is to enhance in vitro plant regeneration protocols via SE and isolate and regenerate plants from protoplasts derived from embryogenic calli of the Corvina veronese, a variety economically important in Veneto region. Protoplasts will serve as a platform for DNA-free genome editing using CRISPR/Cas9 to target genes responsible for grapevine susceptibility to powdery and downy mildew. The study includes a preliminary phenotypic characterization of regenerated plants to assess whether gene editing or the regeneration process has influenced their morphology and behaviour compared to plants grown under standard conditions. This research aims to accelerate the development of grapevine varieties with improved traits, addressing the challenges posed by conventional breeding methods.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Clarissa Ciffolillo1*, Edoardo Bertini2, Stefania Zattoni1, Sara Lissandrini1, Sara Zenoni1, Giovanni Battista Tornielli1,3

1Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2Edivite s.r.l. San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova, Italy
3Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

Vitis vinifera, Corvina veronese, Somatic embryogenesis, Protoplasts, DNA-free genome editing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.