terclim by ICS banner
IVES 9 IVES Conference Series 9 Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Abstract

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitroregeneration protocols, particularly through somatic embryogenesis (SE). This method has proven successful in some Vitis species, but its effectiveness varies due to the genotype-dependent nature of many cultivars. Moreover, protoplasts have proven to be particularly suitable for genome editing applications, but protoplasts regeneration remains generally considered inefficient in grapevine.
The focus of this study is to enhance in vitro plant regeneration protocols via SE and isolate and regenerate plants from protoplasts derived from embryogenic calli of the Corvina veronese, a variety economically important in Veneto region. Protoplasts will serve as a platform for DNA-free genome editing using CRISPR/Cas9 to target genes responsible for grapevine susceptibility to powdery and downy mildew. The study includes a preliminary phenotypic characterization of regenerated plants to assess whether gene editing or the regeneration process has influenced their morphology and behaviour compared to plants grown under standard conditions. This research aims to accelerate the development of grapevine varieties with improved traits, addressing the challenges posed by conventional breeding methods.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Clarissa Ciffolillo1*, Edoardo Bertini2, Stefania Zattoni1, Sara Lissandrini1, Sara Zenoni1, Giovanni Battista Tornielli1,3

1Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2Edivite s.r.l. San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova, Italy
3Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

Vitis vinifera, Corvina veronese, Somatic embryogenesis, Protoplasts, DNA-free genome editing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.

Chromatic characteristics of Nermantis and Termantis wines from traditional and withered grapes

The work aims to characterise the colour features of the wines of two new resistant varieties breeeded at the Edmund Mach Foundation (Italy) and recently inscribed in the Italian National Registriy of Vine Varieties.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide.