terclim by ICS banner
IVES 9 IVES Conference Series 9 Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Abstract

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform. New base-calling models were used to characterise cytosine methylation in various contexts (CG, CHG, and CHH) alongside adenosine methylation. Subsampling revealed that low-depth skim sequencing (0.1x) is sufficient to distinguish genome-wide methylation profiles, with geographic location emerging as the predominant factor influencing epigenetic traits. The method of sample preservation, whether immediate snap-freezing or initial storage in desiccant, did not have a significant effect on the results.

 This research demonstrates the potential of low-depth nanopore sequencing for assessing epigenetic variability as influenced by environmental factors in plants. The approach holds promise for the investigation of the mechanisms that drive the expression of location-specific agronomic traits, forecasting climate-related epigenetic shifts, and facilitating the development of technologies aimed at inducing targeted epigenetic modifications.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cen Liau1, Annabel Whibley1, Bhanupratap Vanga1, Solomon Wante1, Amy Hill1, Ellie Bradley1, Darrell Lizamore1*

1Grapevine Improvement Team, Bragato Research Institute, Lincoln, New Zealand

Contact the author*

Keywords

Nanopore sequencing, epigenetics, DNA methylation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane

Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

The aim of this communication is the study of the Ronda and Arriate municipal territories environment in order to define and to establish the main physical factors in relation to vine-growing land use. The vine-growing zoning proposed is based on geopedological and climatic features.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...