terclim by ICS banner
IVES 9 IVES Conference Series 9 Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Abstract

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform. New base-calling models were used to characterise cytosine methylation in various contexts (CG, CHG, and CHH) alongside adenosine methylation. Subsampling revealed that low-depth skim sequencing (0.1x) is sufficient to distinguish genome-wide methylation profiles, with geographic location emerging as the predominant factor influencing epigenetic traits. The method of sample preservation, whether immediate snap-freezing or initial storage in desiccant, did not have a significant effect on the results.

 This research demonstrates the potential of low-depth nanopore sequencing for assessing epigenetic variability as influenced by environmental factors in plants. The approach holds promise for the investigation of the mechanisms that drive the expression of location-specific agronomic traits, forecasting climate-related epigenetic shifts, and facilitating the development of technologies aimed at inducing targeted epigenetic modifications.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cen Liau1, Annabel Whibley1, Bhanupratap Vanga1, Solomon Wante1, Amy Hill1, Ellie Bradley1, Darrell Lizamore1*

1Grapevine Improvement Team, Bragato Research Institute, Lincoln, New Zealand

Contact the author*

Keywords

Nanopore sequencing, epigenetics, DNA methylation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.