terclim by ICS banner
IVES 9 IVES Conference Series 9 New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

Abstract

Nowadays, many policies are being adopted for direct agriculture towards more sustainable approaches. To continue to maintain a high production using fewer fertilizers, pesticides and water resources, agronomic techniques must be combined with biotechnological approaches. In grapevine, the breeding programs are restricted by the fact that it has a highly heterozygous genome, therefore, if on the one hand, we try to improve the characteristics, on the other hand it is necessary to preserve the original genome of the varieties. CRISPR-cas9 system is one of the smartest tools to carry out highly precise genetic modifications leaving the genetic background unchanged. To produce edited DNA-free grapevine plant is necessary to dispose of an efficient delivery system to introduce the preassembled ribonucleoproteins (RNP) and to ensure the subsequent step of regeneration of the edited plant. Protoplasts are the best system for this purpose: they represent a highly regenerative platform accessible to most of transformation techniques. The regeneration is possible through somatic embryogenesis. Grapevine is recalcitrant to the regeneration process leading to a low rate of plant recovery. The aim of this study is to optimise the in vitroregeneration process of Cabernet Sauvignon and Glera varieties to apply a DNA-free genome editing approach to improve agronomical and oenological traits. Here, we also provide preliminary studies on the enhancing effect of the current in the regeneration process through the application of an external electric field and evaluating the expression of fluorescent transcriptional reporters of transcription factors involved in shoot regeneration in A.thaliana.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Stefania Zattoni 1*, Edoardo Bertini 2, Erica D’Incà 2, Maddalena Salvalaio 3, Giovanni Sena 3, Sara Zenoni 1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Edivite s.r.l, San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova
3 Laboratory of plant morphogenesis, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Contact the author*

Keywords

Protoplast, Somatic embryogenesis, CRISPR-cas9, in vitro regeneration, Electric field

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.

Kegged wine as a sustainable alternative: impact on conservation and sensory quality

Wine is not just a beverage; it represents an entire ecosystem in winemaking regions and is deeply linked to economic, social, and environmental factors.

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.