terclim by ICS banner
IVES 9 IVES Conference Series 9 New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

Abstract

Nowadays, many policies are being adopted for direct agriculture towards more sustainable approaches. To continue to maintain a high production using fewer fertilizers, pesticides and water resources, agronomic techniques must be combined with biotechnological approaches. In grapevine, the breeding programs are restricted by the fact that it has a highly heterozygous genome, therefore, if on the one hand, we try to improve the characteristics, on the other hand it is necessary to preserve the original genome of the varieties. CRISPR-cas9 system is one of the smartest tools to carry out highly precise genetic modifications leaving the genetic background unchanged. To produce edited DNA-free grapevine plant is necessary to dispose of an efficient delivery system to introduce the preassembled ribonucleoproteins (RNP) and to ensure the subsequent step of regeneration of the edited plant. Protoplasts are the best system for this purpose: they represent a highly regenerative platform accessible to most of transformation techniques. The regeneration is possible through somatic embryogenesis. Grapevine is recalcitrant to the regeneration process leading to a low rate of plant recovery. The aim of this study is to optimise the in vitroregeneration process of Cabernet Sauvignon and Glera varieties to apply a DNA-free genome editing approach to improve agronomical and oenological traits. Here, we also provide preliminary studies on the enhancing effect of the current in the regeneration process through the application of an external electric field and evaluating the expression of fluorescent transcriptional reporters of transcription factors involved in shoot regeneration in A.thaliana.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Stefania Zattoni 1*, Edoardo Bertini 2, Erica D’Incà 2, Maddalena Salvalaio 3, Giovanni Sena 3, Sara Zenoni 1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Edivite s.r.l, San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova
3 Laboratory of plant morphogenesis, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Contact the author*

Keywords

Protoplast, Somatic embryogenesis, CRISPR-cas9, in vitro regeneration, Electric field

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle.

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS).