terclim by ICS banner
IVES 9 IVES Conference Series 9 New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

Abstract

Nowadays, many policies are being adopted for direct agriculture towards more sustainable approaches. To continue to maintain a high production using fewer fertilizers, pesticides and water resources, agronomic techniques must be combined with biotechnological approaches. In grapevine, the breeding programs are restricted by the fact that it has a highly heterozygous genome, therefore, if on the one hand, we try to improve the characteristics, on the other hand it is necessary to preserve the original genome of the varieties. CRISPR-cas9 system is one of the smartest tools to carry out highly precise genetic modifications leaving the genetic background unchanged. To produce edited DNA-free grapevine plant is necessary to dispose of an efficient delivery system to introduce the preassembled ribonucleoproteins (RNP) and to ensure the subsequent step of regeneration of the edited plant. Protoplasts are the best system for this purpose: they represent a highly regenerative platform accessible to most of transformation techniques. The regeneration is possible through somatic embryogenesis. Grapevine is recalcitrant to the regeneration process leading to a low rate of plant recovery. The aim of this study is to optimise the in vitroregeneration process of Cabernet Sauvignon and Glera varieties to apply a DNA-free genome editing approach to improve agronomical and oenological traits. Here, we also provide preliminary studies on the enhancing effect of the current in the regeneration process through the application of an external electric field and evaluating the expression of fluorescent transcriptional reporters of transcription factors involved in shoot regeneration in A.thaliana.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Stefania Zattoni 1*, Edoardo Bertini 2, Erica D’Incà 2, Maddalena Salvalaio 3, Giovanni Sena 3, Sara Zenoni 1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Edivite s.r.l, San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova
3 Laboratory of plant morphogenesis, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Contact the author*

Keywords

Protoplast, Somatic embryogenesis, CRISPR-cas9, in vitro regeneration, Electric field

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Microbial metagenomics of vineyard soils and wine terroir

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied.

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.