terclim by ICS banner
IVES 9 IVES Conference Series 9 In vitro tissue culture as a tool for Croatian grapevine germplasm management

In vitro tissue culture as a tool for Croatian grapevine germplasm management

Abstract

In vitro culture makes it possible to carry out specific studies that would not be possible with whole plants grown in the field or in a greenhouse. Cryopreservation allows long-term preservation without metabolic changes in the plant material and cryotherapy can be efficient in virus elimination, which is a major scientific challenge.
The preculture media of cryopreservation protocols were evaluated on three Croatian grape varieties with different antioxidants (salicylic acid, ascorbic acid and glutathione). The highest growth in vitro was achieved on the medium with the addition of glutathione and the lowest with the addition of salicylic acid. Growth in vitro and regeneration after cryopreservation depended on genotype and health status. The cryopreservation protocols tested (as part of cryotherapy) did not result in sufficient regeneration after cryopreservation (10-15%) in the varieties tested.
Virus elimination was tested for economically important viruses by meristem tip culture in 18 Croatian varieties. In vitro regeneration ranged 6.82-53.22%, but virus elimination was achieved in only three cultivars and was very low (23.8%). In addition, two new grapevine viruses (GVG and GBV-1) were tested. The results showed a low percentage of virus elimination (2%) by meristem tip culture in three-month-old tissue cultures.
Preliminary research activities were carried out by micrografting with Croatian grape varieties. The survival rate was good, but regeneration was difficult to achieve. A more detailed study is in progress. Overall, the presented methods of meristem tip culture, cryopreservation and micrografting should be further evaluated for the Croatian grapevine germplasm to enable wider application.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Zvjezdana Marković1*, Željko Andabaka1, Domagoj Stupić1, Iva Šikuten1, Petra Štambuk1, Edi Maletić1, Jasminka Karoglan Kontić Jasminka1, Darko Vončina2, Darko Preiner1

1 University of Zagreb, Faculty of Agriculture, Department of Viticulture and Enology, Zagreb
2 University of Zagreb, Faculty of Agriculture, Department of Plant Pathology, Zagreb

Contact the author*

Keywords

Vitis vinifera L., cryopreservation, preculture with antioxidants, virus elimination, meristem culture, regeneration

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Identifying wild Vitis riparia Michx clones as a source of rootstock to mitigate vigour and acclimation/deacclimation cycles of the scion

Grapevine rootstocks have traditionally been chosen in order to manage scion vigour, soil pests and soil conditions. Riparia Gloire de Montpellier (RGM) has been in use since the turn of the 19th century, over 100 years and still a remarkably stable source of phylloxera (Daktulosphaeria vitifoliae Fitch) resistance. The original source material was probably collected near the Missouri/Mississippi river confluence, a mid-continental but more southerly location in the United States. It has been hypothesized that more northerly selections of V. riparia Michx might improve both fall acclimation rate and depth of the scion, thus mitigating late fall frost and midwinter freeze damage.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Characterization and biological effects of extracts from winery by-products

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process.