Terroir 2016 banner
IVES 9 IVES Conference Series 9 The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Abstract

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Soil profile description by means of pits is essential for a relevant characterization of the soil. However, the interpretation of results is very difficult for non-specialists, as for most of advisors or winegrowers, due to the multitude of parameters and their variability within the soil profile.

We propose here a novel method to represent soil parameters variability, integrating thickness and depth of the different horizons, providing an operational Decision and Support System (DSS) for winegrowers and advisors.

For each parameter, soil profile is represented by a vertical block divided in 10 centimeters layers, in order to highlight the thickness of the different horizons. According to the parameter value, a specific color code, based on analytical references, is applied for each horizon. This method has been applied on different soil parameters : coarse fragments content, clay content, slaking and compaction index, carbonate content, pH, organic content and stock, carbon/nitrogen ratio, cation exchange capacity, exchangeable cations contents, base saturation percentage.

This method, called « Resources Profile® », has been tested on a large number of soil types, representative of soils variability in Bordeaux wine production area (France). It allows to easily visualize soil parameters variability within soil profile and to evaluate agronomic properties, such as hydrological soil properties, organic and calcic status, mineral resources or degradation sensitivities.

We believe that the « Resources Profile® » is a relevant DSS for adapting viticultural practices to soils characteristics and for limiting their environmental impacts. This DSS is likely to facilitate the spread of soil science knowledge to the vinegrowing industry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

M Christen (1), L Cazenave (1), M Guinoiseau (1), E Beauquesne (2), P Guilbault (1)

(1) Chambre d’Agriculture de la Gironde – Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne – CS 20115 33295 Blanquefort Cedex, France
(2) AUREA Agrosciences, 39 rue Michel Montaigne – CS 20115, 33295 Blanquefort Cedex, France

Contact the author

Keywords

winegrowing soils, soil profiles, soil horizons, soil analysis, agronomic properties, viticultural practices, Decision and Support System

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF. METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity