Terroir 2016 banner
IVES 9 IVES Conference Series 9 The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Abstract

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Soil profile description by means of pits is essential for a relevant characterization of the soil. However, the interpretation of results is very difficult for non-specialists, as for most of advisors or winegrowers, due to the multitude of parameters and their variability within the soil profile.

We propose here a novel method to represent soil parameters variability, integrating thickness and depth of the different horizons, providing an operational Decision and Support System (DSS) for winegrowers and advisors.

For each parameter, soil profile is represented by a vertical block divided in 10 centimeters layers, in order to highlight the thickness of the different horizons. According to the parameter value, a specific color code, based on analytical references, is applied for each horizon. This method has been applied on different soil parameters : coarse fragments content, clay content, slaking and compaction index, carbonate content, pH, organic content and stock, carbon/nitrogen ratio, cation exchange capacity, exchangeable cations contents, base saturation percentage.

This method, called « Resources Profile® », has been tested on a large number of soil types, representative of soils variability in Bordeaux wine production area (France). It allows to easily visualize soil parameters variability within soil profile and to evaluate agronomic properties, such as hydrological soil properties, organic and calcic status, mineral resources or degradation sensitivities.

We believe that the « Resources Profile® » is a relevant DSS for adapting viticultural practices to soils characteristics and for limiting their environmental impacts. This DSS is likely to facilitate the spread of soil science knowledge to the vinegrowing industry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

M Christen (1), L Cazenave (1), M Guinoiseau (1), E Beauquesne (2), P Guilbault (1)

(1) Chambre d’Agriculture de la Gironde – Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne – CS 20115 33295 Blanquefort Cedex, France
(2) AUREA Agrosciences, 39 rue Michel Montaigne – CS 20115, 33295 Blanquefort Cedex, France

Contact the author

Keywords

winegrowing soils, soil profiles, soil horizons, soil analysis, agronomic properties, viticultural practices, Decision and Support System

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of different packaging materials on table grape quality preservation during cold storage

During cold storage, grapes undergo changes that affect their visual, mechanical, and organoleptic properties, potentially impacting quality and negatively influencing consumer acceptance. Key parameters include uniform color, crunchiness, and flesh consistency. We evaluated the influence of two distinct packaging methods on the chromatic characteristics, hardness, and pedicel detachment resistance of fourteen new seedless white and red grape varieties during cold storage. These factors are crucial for maintaining the quality of the product and extending its shelf-life. The novel grape varieties were obtained through a breeding program at CREA-VE of Turi, Southern Italy.

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses.

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums.