terclim by ICS banner
IVES 9 IVES Conference Series 9 How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Abstract

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Although aims, usage and expenses of applying digital tools differ, the requested outcome is similar: objective, precise and reliable data for plant evaluation with high spatial and temporal resolution. For grapevine research and breeding, fast and possibly non-destructive data acquisition is crucial in order to capture phenotypic behaviors throughout the season, e.g. plant health after heat waves (grape sunburn). Depending on the trait of interest, we established pipelines for high-throughput data acquisition under standardized lab conditions and for in-field applications by ground-based platforms. Automated data analysis is furthermore of outstanding importance to reliably extract phenotypic traits from sensor data without the need of permanent user interaction. Therefore, efficient sensors combined with AI-based data analysis are the most powerful tools we used to extract and predict complex traits like yield potential, canopy health (both using field images) or Botrytis bunch rot resilience.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Katja Herzog*, Anna Kicherer, Nagarjun Malagol, Ludger Hausmann, Oliver Trapp, Reinhard Töpfer

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany

Contact the author*

Keywords

High-throughput phenotyping, digital trait detection, yield prediction, grapevine health, quantitative trait locus (QTL) analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential.