terclim by ICS banner
IVES 9 IVES Conference Series 9 How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Abstract

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Although aims, usage and expenses of applying digital tools differ, the requested outcome is similar: objective, precise and reliable data for plant evaluation with high spatial and temporal resolution. For grapevine research and breeding, fast and possibly non-destructive data acquisition is crucial in order to capture phenotypic behaviors throughout the season, e.g. plant health after heat waves (grape sunburn). Depending on the trait of interest, we established pipelines for high-throughput data acquisition under standardized lab conditions and for in-field applications by ground-based platforms. Automated data analysis is furthermore of outstanding importance to reliably extract phenotypic traits from sensor data without the need of permanent user interaction. Therefore, efficient sensors combined with AI-based data analysis are the most powerful tools we used to extract and predict complex traits like yield potential, canopy health (both using field images) or Botrytis bunch rot resilience.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Katja Herzog*, Anna Kicherer, Nagarjun Malagol, Ludger Hausmann, Oliver Trapp, Reinhard Töpfer

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany

Contact the author*

Keywords

High-throughput phenotyping, digital trait detection, yield prediction, grapevine health, quantitative trait locus (QTL) analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Variety and climatic effects on quality scores in the Western US winegrowing regions

Wine quality is strongly linked to climate. Quality scores are often driven by climate variation across different winegrowing regions and years, but also influenced by other aspects of terroir, including variety. While recent work has looked at the relationship between quality scores and climate across many European regions, less work has examined New World winegrowing regions. Here we used scores from three major rating systems (Wine Advocate, Wine Enthusiast and Wine Spectator) combined with daily climate and phenology data to understand what drives variation across wine quality scores in major regions of the Western US, including regions in California, Oregon and Washington. We examined effects of variety, region, and in what phenological period climate was most predictive of quality. As in other studies, we found climate, based mainly on growing degree day (GDD) models, was generally associated with quality—with higher GDD associated with higher scores—but variety and region also had strong effects. Effects of region were generally stronger than variety. Certain varieties received the highest scores in only some areas, while other varieties (e.g., Merlot) generally scored lower across regions. Across phenological stages, GDD during budbreak was often most strongly associated with quality. Our results support other studies that warmer periods generally drive high quality wines, but highlight how much region and variety drive variation in scores outside of climate.

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied.

Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation

A great variability in the amount of polysaccharides recovered at the end of fermentations carried out by pure cultures of 89 non-Saccharomyces yeasts was observed. The utilization of the best polysaccharides producers in mixed cultures with S. cerevisiae resulted in considerable increases in the final concentration of polysaccharides and showed a strain dependent effect on glycerol production as compared to pure culture of S. cerevisiae.

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.