terclim by ICS banner
IVES 9 IVES Conference Series 9 How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Abstract

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Although aims, usage and expenses of applying digital tools differ, the requested outcome is similar: objective, precise and reliable data for plant evaluation with high spatial and temporal resolution. For grapevine research and breeding, fast and possibly non-destructive data acquisition is crucial in order to capture phenotypic behaviors throughout the season, e.g. plant health after heat waves (grape sunburn). Depending on the trait of interest, we established pipelines for high-throughput data acquisition under standardized lab conditions and for in-field applications by ground-based platforms. Automated data analysis is furthermore of outstanding importance to reliably extract phenotypic traits from sensor data without the need of permanent user interaction. Therefore, efficient sensors combined with AI-based data analysis are the most powerful tools we used to extract and predict complex traits like yield potential, canopy health (both using field images) or Botrytis bunch rot resilience.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Katja Herzog*, Anna Kicherer, Nagarjun Malagol, Ludger Hausmann, Oliver Trapp, Reinhard Töpfer

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany

Contact the author*

Keywords

High-throughput phenotyping, digital trait detection, yield prediction, grapevine health, quantitative trait locus (QTL) analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Callinikos: the new white table grapeseedless variety for biological produce

This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Non-alcoholic wines: evaluation of chemical profile and biological properties

The market of non-alcoholic wine has notably increased in recent years, driven by growing health awareness and regulatory trends aimed at reducing alcohol consumption.

Terroir and precision viticulture: are they compatible?

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale.