terclim by ICS banner
IVES 9 IVES Conference Series 9 How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Abstract

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Although aims, usage and expenses of applying digital tools differ, the requested outcome is similar: objective, precise and reliable data for plant evaluation with high spatial and temporal resolution. For grapevine research and breeding, fast and possibly non-destructive data acquisition is crucial in order to capture phenotypic behaviors throughout the season, e.g. plant health after heat waves (grape sunburn). Depending on the trait of interest, we established pipelines for high-throughput data acquisition under standardized lab conditions and for in-field applications by ground-based platforms. Automated data analysis is furthermore of outstanding importance to reliably extract phenotypic traits from sensor data without the need of permanent user interaction. Therefore, efficient sensors combined with AI-based data analysis are the most powerful tools we used to extract and predict complex traits like yield potential, canopy health (both using field images) or Botrytis bunch rot resilience.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Katja Herzog*, Anna Kicherer, Nagarjun Malagol, Ludger Hausmann, Oliver Trapp, Reinhard Töpfer

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany

Contact the author*

Keywords

High-throughput phenotyping, digital trait detection, yield prediction, grapevine health, quantitative trait locus (QTL) analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Volatile compounds of base wines for the production of Lessini Durello sparkling wine

AIM Durello is a sparkling wine produced in the Lessini mountains near Verona. The wine is made from Durella grapes, a native white grape variety with a particularly high acidity. In spite of the small production area (375 ha for only 35 producers), there is a growing interest in this product. However, little is known about the aromatic profiles of these wines. The aim of this work was to characterize the aroma profile of Durella base wines suitable for the production of Lessini Durello sparkling wine. METHODS 14 base wines from Durella grapesfrom different producers were used for this study. Solid Phase Microextraction (SPME) and Solid Phase Extraction (SPE) sampling techniques coupled to GC-MS analysis allowed to identify and quantify a total of 62 volatile compounds. RESULTS Durello base wines showed relatively high levels of vitispirane, ß-damascenone, ß-citronellol and esters.

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009).

Terroir zoning in appellation campo de borja (northeast Spain): Preliminary results

The components and methodology for characterization of the terroir have been described by Gómez-Miguel & Sotés (1993-2014, 2003) and Gómez-Miguel (2011) taking into account the full range of environmental factors (i.e: climate, lithology, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and specific variables to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.).

Agronomic and oenological characterization of the intraspecific cross ‘Passau’ in the aim of its commercial use

The study of new wine grape cultivars can be interesting to diversify the local wine productions without using international varieties. With this aim some Vitis vinifera intraspecific crosses obtained by Prof. Dalmasso in the 1930s and registered in the Italian National Catalogue in 1977, have been studied in the last years.

Grapevine responses to Botrytis cinerea infection: noble rot versus grey rot

The intricate relationship between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can lead to the development of either the desirable noble rot (NR) or the unfavourable grey rot (GR), depending on the prevailing weather conditions.