terclim by ICS banner
IVES 9 IVES Conference Series 9 Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Abstract

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact. In addition, the reduction in the mitochondria cristae density occurred simultaneously with the decrease of malate dehydrogenase and succinate dehydrogenase activities. By proteomics, we identified 956 differentially accumulated proteins, of which most were down-regulated at ripening. However, several respiratory enzymes were among the most abundant proteins at ripening, showing the maintenance of respiratory activity. Furthermore, we hypothesized that gluconeogenesis originating from malate can happen in NR berries, and that sucrose futile cycles may become an important system for storing and unloading carbohydrates. Therefore, the present data indicate that the premature loss of berry mesocarp vitality in NR was not associated with cell death. Moreover, the grape variety and cultivation region can influence protein abundance, enriching our understanding of grape berry proteome and ripening dynamics in tropical conditions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Eduardo Monteiro1, Luan Cordeiro Corrêa1, Roberta Pena de Paschoa2, Vanildo Silveira2, Ricardo Enrique Bressan-Smith1*

1 Universidade Estadual do Norte Fluminense, Plant Physiology Lab
2 Universidade Estadual do Norte Fluminense, Laboratório de Biotecnologia

Contact the author*

Keywords

grapevine, tropical viticulture, berry maturation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

“Vinhos de mesa” et oenophilie : quand les caractéristiques organoleptiques des cépages américains empêchent l’intégration des consommateurs à l’univers de l’appréciation esthétique

Au Brésil, 80 % du vignoble national et 90 % du vignoble de l’État du Rio Grande do Sul (principale région productrice de vins dans le pays) sont plantés avec des cépages issus de vitis labrusca ou de cépages hybrides (DEBASTIANI, 2015). Une partie de cette production est utilisée pour la préparation de jus de raisin et de concentrés de moût ou de pulpe de raisin. Le restant est consacré à

Advances in the chemistry of rosé winemaking and ageing

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines.

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.