terclim by ICS banner
IVES 9 IVES Conference Series 9 Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Abstract

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact. In addition, the reduction in the mitochondria cristae density occurred simultaneously with the decrease of malate dehydrogenase and succinate dehydrogenase activities. By proteomics, we identified 956 differentially accumulated proteins, of which most were down-regulated at ripening. However, several respiratory enzymes were among the most abundant proteins at ripening, showing the maintenance of respiratory activity. Furthermore, we hypothesized that gluconeogenesis originating from malate can happen in NR berries, and that sucrose futile cycles may become an important system for storing and unloading carbohydrates. Therefore, the present data indicate that the premature loss of berry mesocarp vitality in NR was not associated with cell death. Moreover, the grape variety and cultivation region can influence protein abundance, enriching our understanding of grape berry proteome and ripening dynamics in tropical conditions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Eduardo Monteiro1, Luan Cordeiro Corrêa1, Roberta Pena de Paschoa2, Vanildo Silveira2, Ricardo Enrique Bressan-Smith1*

1 Universidade Estadual do Norte Fluminense, Plant Physiology Lab
2 Universidade Estadual do Norte Fluminense, Laboratório de Biotecnologia

Contact the author*

Keywords

grapevine, tropical viticulture, berry maturation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

The potential of new selection and indigenous grape varieties for sparkling wine production

In the context of climate change, it is essential to provide producers with alternatives based on local grape varieties capable of meeting modern quality and sustainability requirements.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.
This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.