terclim by ICS banner
IVES 9 IVES Conference Series 9 Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Abstract

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact. In addition, the reduction in the mitochondria cristae density occurred simultaneously with the decrease of malate dehydrogenase and succinate dehydrogenase activities. By proteomics, we identified 956 differentially accumulated proteins, of which most were down-regulated at ripening. However, several respiratory enzymes were among the most abundant proteins at ripening, showing the maintenance of respiratory activity. Furthermore, we hypothesized that gluconeogenesis originating from malate can happen in NR berries, and that sucrose futile cycles may become an important system for storing and unloading carbohydrates. Therefore, the present data indicate that the premature loss of berry mesocarp vitality in NR was not associated with cell death. Moreover, the grape variety and cultivation region can influence protein abundance, enriching our understanding of grape berry proteome and ripening dynamics in tropical conditions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Eduardo Monteiro1, Luan Cordeiro Corrêa1, Roberta Pena de Paschoa2, Vanildo Silveira2, Ricardo Enrique Bressan-Smith1*

1 Universidade Estadual do Norte Fluminense, Plant Physiology Lab
2 Universidade Estadual do Norte Fluminense, Laboratório de Biotecnologia

Contact the author*

Keywords

grapevine, tropical viticulture, berry maturation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

La producción vitivinícola como fuente de impactos positivos en el medio seminatural

Wine is at risk of being labelled as a dangerous health product, based on studies that focus on its alcohol content. However, multiple studies suggest that moderate consumption is healthy. Changing the focus from health impacts to the environmental and socioeconomic impacts that wine companies cause, what can be said?

Evaluation of intravarietal variability and selection for tolerance to downy mildew: The case of Antão Vaz variety in Portugal 

Antão Vaz is a Portuguese white grapevine variety grown mainly in the wine-growing regions of Southern Portugal, particularly in the Alentejo, Lisbon and Setúbal peninsula regions. It is a very vigorous and productive variety, giving the wines a strong identity. It needs heat and sunlight and prefers deep and dry soils, which makes it tolerant to scald caused by the high summer temperatures of Southern Portugal. However, this variety is very susceptible to downy mildew, caused by plasmopara viticola, a very destructive disease in years with rainy springs.

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality