terclim by ICS banner
IVES 9 IVES Conference Series 9 Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

Abstract

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact. In addition, the reduction in the mitochondria cristae density occurred simultaneously with the decrease of malate dehydrogenase and succinate dehydrogenase activities. By proteomics, we identified 956 differentially accumulated proteins, of which most were down-regulated at ripening. However, several respiratory enzymes were among the most abundant proteins at ripening, showing the maintenance of respiratory activity. Furthermore, we hypothesized that gluconeogenesis originating from malate can happen in NR berries, and that sucrose futile cycles may become an important system for storing and unloading carbohydrates. Therefore, the present data indicate that the premature loss of berry mesocarp vitality in NR was not associated with cell death. Moreover, the grape variety and cultivation region can influence protein abundance, enriching our understanding of grape berry proteome and ripening dynamics in tropical conditions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Eduardo Monteiro1, Luan Cordeiro Corrêa1, Roberta Pena de Paschoa2, Vanildo Silveira2, Ricardo Enrique Bressan-Smith1*

1 Universidade Estadual do Norte Fluminense, Plant Physiology Lab
2 Universidade Estadual do Norte Fluminense, Laboratório de Biotecnologia

Contact the author*

Keywords

grapevine, tropical viticulture, berry maturation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).