terclim by ICS banner
IVES 9 IVES Conference Series 9 Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Abstract

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines. Among them, we selected 56 highly informative SNVs to custom-design a high-throughput genotyping chip for this cultivar, which was validated and further tested in 94 ‘Tempranillo Tinto’ vines from highly diverse regions. Phylogenetic analyses revealed that ‘Tempranillo Tinto’ samples grouped in three major clonal lineages, a clustering that reflected the geographic origin of the samples. After combining these results with genome re-sequencing data from the two ‘Tempranillo Tinto’ parents, we found the Ebro River Valley as the most likely region of origin for ‘Tempranillo Tinto’. Results also revealed one major historical dissemination route that likely progressed westwards from this original site, towards the main winemaking regions found across the Duero River Valley and to the South in Portugal. Collectively, the results obtained in this study shed light on the origin and historical dispersal of ‘Tempranillo Tinto’ in the Iberian Peninsula, and released highly informative SNVs for the differentiation of intra-cultivar lineages.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Javier Tello1*, Pablo Carbonell-Bejerano1, Rafael Torres-Pérez2, Yolanda Ferradás1,3, Carolina Royo1, Juan Carlos Oliveros2, Javier Ibáñez1, José Miguel Martínez-Zapater1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño.
2 Centro Nacional de Biotecnología, C/Darwin 3, 28049 Madrid.
3 Current address: Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela

Contact the author*

Keywords

clonal lineage, grapevine, Iberian Peninsula, phylogenomics, SNV

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Changing New Zealand climate equals a changing New Zealand terroir?

Changing New Zealand climate equals a changing New Zealand terroir

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Fingerprinting as approach to unlock black box of taste

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.