terclim by ICS banner
IVES 9 IVES Conference Series 9 Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

Abstract

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes. All the data and metadata have been digitalized and hosted in a SQL database, the FEMVitisDB, developed with an ontology driven paradigm to annotate the deposited information. The database was built following the MIAPPE checklist to ensure data FAIRness. A RESTful WebServiceAPI based on BrAPI and a web frontend were developed to easily explore the information in the repository.
Findings about the captured genetic diversity, the identified unique profiles, and the scouted unknown and therefore novel genotypes will be discussed. The latter enrich the genetic asset of the grapevine community, towards the feeding of international databases. Where feasible, the first degree of parentage relationship has been reconstructed. Finally, the outcomes regarding the inferred phenological core collections will be introduced to provide an information arsenal for future ’omics analyses.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Paola Bettinelli1*, Daniela Nicolini1, Giulia Betta1, Daniele Migliaro2, Laura Costantini1, Geovani Luciano de Oliveira3, Silvano Clementi1, Luca Zulini1, Paolo Fontana1, Luca Bianco1, Marco Stefanini1, Diego Micheletti, Silvia Vezzulli

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy
2 CREA – Research Centre for Viticulture and Enology, Conegliano (Treviso), Italy
3 Molecular Biology and Genetic Engineering Center (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

§ equally contributed

Contact the author*

Keywords

Database, collection, breeding, kinship, Vitis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Relationship between terroir and acidity for the red wine grape cultivar Malbec N or Cot N (Vitis vinifera L.) in AOC “Cahors” and “Côtes du Frontonnais “

L’étude préliminaire, réalisée sur les principaux cépages de la région Midi-Pyrénées, a montré que le Cot N possédait des teneurs en acide tartrique dans les moûts et les vins plus élevées que celles des cépages Négrette N, Tannat N, Duras N et Fer Servadou N.

A new step toward the comprehensive valorisation of grape marc through subcritical water extraction of polysaccharides

Winemaking generates a significant amount of waste. Grape marc, the main solid residue, constitutes 20-25% of the pressed grapes and approximately 8-9 million tons are produced globally each year.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.