terclim by ICS banner
IVES 9 IVES Conference Series 9 Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

Abstract

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes. All the data and metadata have been digitalized and hosted in a SQL database, the FEMVitisDB, developed with an ontology driven paradigm to annotate the deposited information. The database was built following the MIAPPE checklist to ensure data FAIRness. A RESTful WebServiceAPI based on BrAPI and a web frontend were developed to easily explore the information in the repository.
Findings about the captured genetic diversity, the identified unique profiles, and the scouted unknown and therefore novel genotypes will be discussed. The latter enrich the genetic asset of the grapevine community, towards the feeding of international databases. Where feasible, the first degree of parentage relationship has been reconstructed. Finally, the outcomes regarding the inferred phenological core collections will be introduced to provide an information arsenal for future ’omics analyses.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Paola Bettinelli1*, Daniela Nicolini1, Giulia Betta1, Daniele Migliaro2, Laura Costantini1, Geovani Luciano de Oliveira3, Silvano Clementi1, Luca Zulini1, Paolo Fontana1, Luca Bianco1, Marco Stefanini1, Diego Micheletti, Silvia Vezzulli

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy
2 CREA – Research Centre for Viticulture and Enology, Conegliano (Treviso), Italy
3 Molecular Biology and Genetic Engineering Center (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

§ equally contributed

Contact the author*

Keywords

Database, collection, breeding, kinship, Vitis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A general phenological model for characterising grape vine flowering and véraison

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.