terclim by ICS banner
IVES 9 IVES Conference Series 9 Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Abstract

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field. The system uses automatic weighing mini-lysimeters to record whole-plant evapotranspiration throughout the growing season and manage deficit irrigation programs for drought trials, as well as infrared lamps to heat the cluster zone above ambient temperature. Drought stress was imposed at 25% soil field capacity for 9 days, during which a heat stress of 5 days was induced with infrared lamps set to 800W at 30cm from the fruiting cane. Grapevine ecophysiology was monitored throughout the experimental period. The system successfully allowed us to control grapevine evapotranspiration, lowering both leaf stomatal conductance (gsw) and midday stem water potential (Ψstem), as well as increase berry surface temperatures, with a mean increment of 3.6°C. These results provided insight into the efficacy of the system in imposing stress in the field, as well as into possible further improvements for the setup, taking into consideration the constraints of the system as well as undesired effects of changing weather during the experiment.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jacopo Innocenti1*, Elena Farolfi1, Francesco Flagiello1, Rudi Rizzoli1, Soma Laszlo Tarnay1, Astrid Forneck1, José Carlos Herrera1

1 Institute for Viticulture and Pomology, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz Straße, 3430, Tulln an der Donau, Austria

Contact the author*

Keywords

abiotic stress, climate change, heatwaves, phenotyping, method development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C )

Breeding grapevines for disease and low temperature tolerance: the U.S. perspective

Most grape scion cultivars grown around the world are derived from a single species, Vitis vinifera. Yet, the proportion of interspecific hybrids is increasing for a variety of reasons, including resistance to abiotic stresses such as low temperatures; societal, economic and environmental pressures to reduce pesticide usage; and to add a greater range of flavors to new table grape cultivars.