terclim by ICS banner
IVES 9 IVES Conference Series 9 Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Abstract

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.Grapevines were monitored at solar noon using stem water potential (Ψs) as reference parameter of plant water status. At each date, 36 measurements of Ψs were taken making a total of 396 data in the whole season. AI techniques, including linear regression, gaussian process regression (GPR) support vector machine (SVM), and neural networks, trained with Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms were implemented in MATLAB (using the Regression Learner and Natural Net Fitting apps) to analyze the spectral data and predict vine water status. The optimized GPR model achieved the best performance, with a determination coefficient (R2P) above 0.83 and a root mean squared error of prediction (RMSEP) of 0.112 MPa. However, several neural network models trained with the LM algorithm exhibited superior performance, with R2P values over 0.92 and RMSEP values of approximately 0.080 MPa. This study demonstrates the potential of non-invasive spectroscopy combined with AI methods for accurate prediction of grapevine water status, paving the way for precision irrigation in vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Fernando Rubio-Ordoyo1, María Paz Diago,1,2, Ignacio Barrio1,2, Juan Fernández-Novales1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Vine water status, NIR spectrophotometer, Stem water potential, Gaussian Regression Process, Levenberg-Marquardt algorithm

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values.

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.