terclim by ICS banner
IVES 9 IVES Conference Series 9 Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Abstract

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.Grapevines were monitored at solar noon using stem water potential (Ψs) as reference parameter of plant water status. At each date, 36 measurements of Ψs were taken making a total of 396 data in the whole season. AI techniques, including linear regression, gaussian process regression (GPR) support vector machine (SVM), and neural networks, trained with Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms were implemented in MATLAB (using the Regression Learner and Natural Net Fitting apps) to analyze the spectral data and predict vine water status. The optimized GPR model achieved the best performance, with a determination coefficient (R2P) above 0.83 and a root mean squared error of prediction (RMSEP) of 0.112 MPa. However, several neural network models trained with the LM algorithm exhibited superior performance, with R2P values over 0.92 and RMSEP values of approximately 0.080 MPa. This study demonstrates the potential of non-invasive spectroscopy combined with AI methods for accurate prediction of grapevine water status, paving the way for precision irrigation in vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Fernando Rubio-Ordoyo1, María Paz Diago,1,2, Ignacio Barrio1,2, Juan Fernández-Novales1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Vine water status, NIR spectrophotometer, Stem water potential, Gaussian Regression Process, Levenberg-Marquardt algorithm

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

Impact of winemaking processes on wine polysaccharides, improving by qNMR

Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities. METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics. RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.