terclim by ICS banner
IVES 9 IVES Conference Series 9 Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Abstract

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.Grapevines were monitored at solar noon using stem water potential (Ψs) as reference parameter of plant water status. At each date, 36 measurements of Ψs were taken making a total of 396 data in the whole season. AI techniques, including linear regression, gaussian process regression (GPR) support vector machine (SVM), and neural networks, trained with Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms were implemented in MATLAB (using the Regression Learner and Natural Net Fitting apps) to analyze the spectral data and predict vine water status. The optimized GPR model achieved the best performance, with a determination coefficient (R2P) above 0.83 and a root mean squared error of prediction (RMSEP) of 0.112 MPa. However, several neural network models trained with the LM algorithm exhibited superior performance, with R2P values over 0.92 and RMSEP values of approximately 0.080 MPa. This study demonstrates the potential of non-invasive spectroscopy combined with AI methods for accurate prediction of grapevine water status, paving the way for precision irrigation in vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Fernando Rubio-Ordoyo1, María Paz Diago,1,2, Ignacio Barrio1,2, Juan Fernández-Novales1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Vine water status, NIR spectrophotometer, Stem water potential, Gaussian Regression Process, Levenberg-Marquardt algorithm

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

The Wine Active Compounds (WAC) conference 2022

The 5th edition of the International Conference Series on Wine Active Compounds (WAC) will be held from 29 June to 1 July 2022 (Dijon, France). All authors with accepted abstracts will have the possibility to publish either a short 4-pages article or a...

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling