terclim by ICS banner
IVES 9 IVES Conference Series 9 Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Abstract

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.Grapevines were monitored at solar noon using stem water potential (Ψs) as reference parameter of plant water status. At each date, 36 measurements of Ψs were taken making a total of 396 data in the whole season. AI techniques, including linear regression, gaussian process regression (GPR) support vector machine (SVM), and neural networks, trained with Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms were implemented in MATLAB (using the Regression Learner and Natural Net Fitting apps) to analyze the spectral data and predict vine water status. The optimized GPR model achieved the best performance, with a determination coefficient (R2P) above 0.83 and a root mean squared error of prediction (RMSEP) of 0.112 MPa. However, several neural network models trained with the LM algorithm exhibited superior performance, with R2P values over 0.92 and RMSEP values of approximately 0.080 MPa. This study demonstrates the potential of non-invasive spectroscopy combined with AI methods for accurate prediction of grapevine water status, paving the way for precision irrigation in vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Fernando Rubio-Ordoyo1, María Paz Diago,1,2, Ignacio Barrio1,2, Juan Fernández-Novales1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Vine water status, NIR spectrophotometer, Stem water potential, Gaussian Regression Process, Levenberg-Marquardt algorithm

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Concorrenza, qualità, zonazione. Una valutazione economica della relazione tra politiche, regole e strumenti di gestione dei prodotti del territorio

In questa nota viene analizzata l’importanza della conoscenza del territorio nel funzionamento del mercato dei prodotti alimentari di qualità e nella gestione delle denominazioni di origine.
La denominazione di origine si sta affermando in tutti i mercati alimentari, dopo l’esperienza secolare maturata nel mercato del vino. Iniziative nel campo del turismo, delle produzioni ecologiche, della promozione dello sviluppo, sono collegate alla dimensione territoriale, in risposta ad un generale orientamento della domanda.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Valorization of wine lees for oenological interest by eco-responsible processes

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC).