terclim by ICS banner
IVES 9 IVES Conference Series 9 Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Abstract

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.Grapevines were monitored at solar noon using stem water potential (Ψs) as reference parameter of plant water status. At each date, 36 measurements of Ψs were taken making a total of 396 data in the whole season. AI techniques, including linear regression, gaussian process regression (GPR) support vector machine (SVM), and neural networks, trained with Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms were implemented in MATLAB (using the Regression Learner and Natural Net Fitting apps) to analyze the spectral data and predict vine water status. The optimized GPR model achieved the best performance, with a determination coefficient (R2P) above 0.83 and a root mean squared error of prediction (RMSEP) of 0.112 MPa. However, several neural network models trained with the LM algorithm exhibited superior performance, with R2P values over 0.92 and RMSEP values of approximately 0.080 MPa. This study demonstrates the potential of non-invasive spectroscopy combined with AI methods for accurate prediction of grapevine water status, paving the way for precision irrigation in vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Fernando Rubio-Ordoyo1, María Paz Diago,1,2, Ignacio Barrio1,2, Juan Fernández-Novales1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Vine water status, NIR spectrophotometer, Stem water potential, Gaussian Regression Process, Levenberg-Marquardt algorithm

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity.

Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin.

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.