terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

Abstract

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks. The results of this study show the presence of consistent spatial patterns over seasons and highlight the potential of using monitoring techniques to categorize distinct zones within the vineyard with a clear impact on quality parameters, especially in the most water stressed vines, exhibiting higher levels of anthocyanins, tannins, polymeric pigments, total phenolic index, and colour density compared to low water stress vines. Correlation analysis demonstrated significant and complex relationships between water stress and various parameters. Notably, canopy parameters determined by remote sensing techniques emerged as a key influencer, showing correlations with vinicultural parameters like pruning weight, number of bunches, and yield.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Anke Berry1, Melane A. Vivier1, Carlos Poblete-Echeverria1*

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Spatial variability, Precision viticulture, Remote sensing, water stress, juice and wine composition

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.