terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

Abstract

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks. The results of this study show the presence of consistent spatial patterns over seasons and highlight the potential of using monitoring techniques to categorize distinct zones within the vineyard with a clear impact on quality parameters, especially in the most water stressed vines, exhibiting higher levels of anthocyanins, tannins, polymeric pigments, total phenolic index, and colour density compared to low water stress vines. Correlation analysis demonstrated significant and complex relationships between water stress and various parameters. Notably, canopy parameters determined by remote sensing techniques emerged as a key influencer, showing correlations with vinicultural parameters like pruning weight, number of bunches, and yield.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Anke Berry1, Melane A. Vivier1, Carlos Poblete-Echeverria1*

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Spatial variability, Precision viticulture, Remote sensing, water stress, juice and wine composition

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Study of the fruity aroma of red wines through perceptual interactions among volatile compounds in the context of climate change for the Bordeaux vineyard

The fruity aroma of red wines is described by a wide range of descriptors, ranging from fresh fruits to ripe and jammy fruits, to candied fruits and prunes notes [1]. The fruity quality of a red wine is characterized by notes of fresh and jammy red- and black-berry fruits.

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.