terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

Abstract

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks. The results of this study show the presence of consistent spatial patterns over seasons and highlight the potential of using monitoring techniques to categorize distinct zones within the vineyard with a clear impact on quality parameters, especially in the most water stressed vines, exhibiting higher levels of anthocyanins, tannins, polymeric pigments, total phenolic index, and colour density compared to low water stress vines. Correlation analysis demonstrated significant and complex relationships between water stress and various parameters. Notably, canopy parameters determined by remote sensing techniques emerged as a key influencer, showing correlations with vinicultural parameters like pruning weight, number of bunches, and yield.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Anke Berry1, Melane A. Vivier1, Carlos Poblete-Echeverria1*

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Spatial variability, Precision viticulture, Remote sensing, water stress, juice and wine composition

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

Unravelling the mystery of drought tolerance confered by rootstocks

Climate change will increase the frequency of water deficit experienced in certain european regions, due to increased evapotranspiration and reduced rainfall during the growing cycle. We therefore need to find ways of adaption, including the use of more drought-tolerant planting material. In addition to the varieties used as grafts and involved in the wine ypicity of our wines, rootstocks selection is a relevant way of adapting to more restrictive environmental conditions.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil

The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the wine grape production climatic potential of that region.