terclim by ICS banner
IVES 9 IVES Conference Series 9 Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Abstract

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.
Our main goal is to further develop national grape database, namely collecting and managing ampelographic and ampelometric descriptive data (OIV descriptors), imaging files, providing information on the origin of the varieties based on the data related to their pedigree, including parents, family trees and offspring.
We examine all 1.570 items in our gene bank with special attention to about 117 grape varieties autochthonous to the Carpathian Basin. From this collection more than 50 varieties can neither be found in national genebanks, nor in larger international collections, such as Bakhtiori Chernyi, Balsare Blanc, Cornucopia, Jabizlak, Piros Gránát, Kárpáti Rizling, Krabljak, Sesh i Zi, Polombina, or Tuingirni kara. Some of them are native to the Carpathian Basin, while others are mostly oriental origin. The genebank contains individuals propagated from the methuselah vine stock of Europe, such as the 450-500-year-old Rosa Menna di Vacca in city of Pécs (validated by SSR markers). Our research is also enriched by the Zametovka variety growing in Maribor (Slovenia), which considered as the oldest vine in Europe.
As a result of our work, the database system will also provide data obtained by molecular methods (SSR, SNP), which identify the genotypes supporting for the discovery of further relationships and for further research about the origin of the domesticated grapevine.
The most important international and autochthonous varieties of the genebank will be analyzed on berry skin and flesh anthocyanin composition as well as aroma profiles.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Krisztian Gaal1, Janos Werner1, Balazs Szabo1, Martin Pour Nikfardjam2, Peter Teszlak1

1 University of Pécs, Research Institute for Viticulture and Enology H-7634 Pécs, Pázmány P.u.4., Hungary
2 Staatliche Lehr- und Versuchsanstalt für Wein- und Obstbau D-74189 Weinsberg Weinsberg Traubenplatz 5, Germany

Contact the author*

Keywords

Grapevine, Germplasm, Autochthonous varieties, Maintenance, Clonal selection, Breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The effects of cover cropping systems on vine physiology, berry and wine quality in a climate change scenario in Switzerland

Sustainable weed control with little detrimental effects on vine physiology, yield, berry quality, soil structure, health and biodiversity is a key factor in vineyard management. Few options are available to avoid herbicide utilization and minimize negative effects of frequent tillage on soil quality. The present project aims to investigate and develop different cover management strategies in a cool climate viticultural region in Switzerland. The impact of different treatments on vine, must and wine has been studied in an experimental vineyard in Changins, Switzerland for one year and will be continued over the next three years.

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.