terclim by ICS banner
IVES 9 IVES Conference Series 9 Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Abstract

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.
Our main goal is to further develop national grape database, namely collecting and managing ampelographic and ampelometric descriptive data (OIV descriptors), imaging files, providing information on the origin of the varieties based on the data related to their pedigree, including parents, family trees and offspring.
We examine all 1.570 items in our gene bank with special attention to about 117 grape varieties autochthonous to the Carpathian Basin. From this collection more than 50 varieties can neither be found in national genebanks, nor in larger international collections, such as Bakhtiori Chernyi, Balsare Blanc, Cornucopia, Jabizlak, Piros Gránát, Kárpáti Rizling, Krabljak, Sesh i Zi, Polombina, or Tuingirni kara. Some of them are native to the Carpathian Basin, while others are mostly oriental origin. The genebank contains individuals propagated from the methuselah vine stock of Europe, such as the 450-500-year-old Rosa Menna di Vacca in city of Pécs (validated by SSR markers). Our research is also enriched by the Zametovka variety growing in Maribor (Slovenia), which considered as the oldest vine in Europe.
As a result of our work, the database system will also provide data obtained by molecular methods (SSR, SNP), which identify the genotypes supporting for the discovery of further relationships and for further research about the origin of the domesticated grapevine.
The most important international and autochthonous varieties of the genebank will be analyzed on berry skin and flesh anthocyanin composition as well as aroma profiles.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Krisztian Gaal1, Janos Werner1, Balazs Szabo1, Martin Pour Nikfardjam2, Peter Teszlak1

1 University of Pécs, Research Institute for Viticulture and Enology H-7634 Pécs, Pázmány P.u.4., Hungary
2 Staatliche Lehr- und Versuchsanstalt für Wein- und Obstbau D-74189 Weinsberg Weinsberg Traubenplatz 5, Germany

Contact the author*

Keywords

Grapevine, Germplasm, Autochthonous varieties, Maintenance, Clonal selection, Breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Optimisation de la fertilisation du Cot sur le Causse de l’Appellation d’Origine Contrôlée Cahors

The Appellation d’Origine Contrôlée area of ​​Cahors (Lot) covers an area of ​​21,700 ha, spread over 45 municipalities, of which only 4,300 are planted with vines. The main grape variety of this AOC is the Cot noir which represents 70% of the grape varieties, thus giving their typicality to the wines of this region; but despite this importance, to our knowledge, its physiology has remained relatively unstudied.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.