terclim by ICS banner
IVES 9 IVES Conference Series 9 Techniques for sunburn reduction in bunches in Vitis vinifera L. cv. Graciano

Techniques for sunburn reduction in bunches in Vitis vinifera L. cv. Graciano

Abstract

Sunburn results from a combination of excessive photosynthetically active radiation (PAR) and UV radiation and temperature that can be exacerbated by other stress factors such as water deficit. Sunburn is a physiological disorder that affects the visual and organoleptic properties of grapes. The appearance of brown and necrotic spots severely affects the commercial value of the fruit, and in extreme cases, significantly decreases yield.  This damage occurs with some frequency in sensitive varieties such as Graciano. In order to mitigate these impacts, a shading technique has been proposed using protection nets that try to prevent the bunches from receiving excessive sun exposure. The experience shown in this work has been carried out during the years 2021 and 2022, using nets with shading capacity of 50% and 70%, and in 2023 using nets with 25% and 50% with shading capacity. The results have shown that the nets have significantly reduced the temperature of the bunch, also avoiding damage from sunburn. Besides, the organic acid content of the must has reached slightly higher values in the treatments with netting, compared to the control, but not significantly. In wine, the polyphenolic load has shown a variable behavior depending on the year, possibly conditioned by the variations in yield linked to the sunburn. The tasting panel has shown a certain inclination towards the wines from the net treatments.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Rivacoba*, Javier Portu, Sergio Ibáñez

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Finca La Grajera, Ctra. de Burgos Km. 6, Logroño, La Rioja 26007, Spain

Contact the author*

Keywords

sunburn, shading, Graciano

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.