terclim by ICS banner
IVES 9 IVES Conference Series 9 Techniques for sunburn reduction in bunches in Vitis vinifera L. cv. Graciano

Techniques for sunburn reduction in bunches in Vitis vinifera L. cv. Graciano

Abstract

Sunburn results from a combination of excessive photosynthetically active radiation (PAR) and UV radiation and temperature that can be exacerbated by other stress factors such as water deficit. Sunburn is a physiological disorder that affects the visual and organoleptic properties of grapes. The appearance of brown and necrotic spots severely affects the commercial value of the fruit, and in extreme cases, significantly decreases yield.  This damage occurs with some frequency in sensitive varieties such as Graciano. In order to mitigate these impacts, a shading technique has been proposed using protection nets that try to prevent the bunches from receiving excessive sun exposure. The experience shown in this work has been carried out during the years 2021 and 2022, using nets with shading capacity of 50% and 70%, and in 2023 using nets with 25% and 50% with shading capacity. The results have shown that the nets have significantly reduced the temperature of the bunch, also avoiding damage from sunburn. Besides, the organic acid content of the must has reached slightly higher values in the treatments with netting, compared to the control, but not significantly. In wine, the polyphenolic load has shown a variable behavior depending on the year, possibly conditioned by the variations in yield linked to the sunburn. The tasting panel has shown a certain inclination towards the wines from the net treatments.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Rivacoba*, Javier Portu, Sergio Ibáñez

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Finca La Grajera, Ctra. de Burgos Km. 6, Logroño, La Rioja 26007, Spain

Contact the author*

Keywords

sunburn, shading, Graciano

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.