terclim by ICS banner
IVES 9 IVES Conference Series 9 Learning from remote sensing data: a case study in the Trentino region 

Learning from remote sensing data: a case study in the Trentino region 

Abstract

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy. Trentino, characterized by diverse landscapes ranging from forests to crop fields, is notable for its grapevine cultivation, a significant contributor to the Italian wine industry. Our research aims to analyze the past two decades of satellite data (NASA and Copernicus) using supervised and unsupervised learning methods. The objective is to develop models for soil classification, assessing crop health and growth stage (phenology), and optimizing water management practices, specifically in the context of tree crops (mainly vineyards and apple orchards) in this region. This analytical approach seeks to contribute to a more systematic understanding of the environmental and agricultural dynamics in Trentino, facilitating informed and sustainable land management practices.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marco Moretto1*, Luca Delucchi1, Roberto Zorer1, Pietro Franceschi1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy

Contact the author*

Keywords

machine learning, remote sensing, Trentino, soil, water

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Influence of the agronomic management on the aroma of Riesling wines

Nitrogen fertilisation of grapevines is known to influence not only plant development and production yield, but also yeast assimilable nitrogen (YAN). This parameter is related to the growth of yeast

The characteristics of strong territorial brands: the case of Champagne

While most brands belong to individual enterprises, some brands belong to groups of enterprises based in a single territory. This conceptual paper examines the characteristics

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Grape texture characteristics are linked to one major qtl

Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes.