terclim by ICS banner
IVES 9 IVES Conference Series 9 Learning from remote sensing data: a case study in the Trentino region 

Learning from remote sensing data: a case study in the Trentino region 

Abstract

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy. Trentino, characterized by diverse landscapes ranging from forests to crop fields, is notable for its grapevine cultivation, a significant contributor to the Italian wine industry. Our research aims to analyze the past two decades of satellite data (NASA and Copernicus) using supervised and unsupervised learning methods. The objective is to develop models for soil classification, assessing crop health and growth stage (phenology), and optimizing water management practices, specifically in the context of tree crops (mainly vineyards and apple orchards) in this region. This analytical approach seeks to contribute to a more systematic understanding of the environmental and agricultural dynamics in Trentino, facilitating informed and sustainable land management practices.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marco Moretto1*, Luca Delucchi1, Roberto Zorer1, Pietro Franceschi1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy

Contact the author*

Keywords

machine learning, remote sensing, Trentino, soil, water

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.

Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Evaluation of the fertility management practices in wine grape varieties production. Wine grape represents one of the most important productions in Greece with major impact to the socioeconomic characteristics of the country. The objective of this study is to evaluate, with the support of Geospatial Technologies, the potential effects of an innovative foliar fertilizer system, which is composed of three parts: a mineral fertilizer in a micronized formulation, a biostimulant as an enhancing factor of the process and, an amino acid compound (SANOVITA concept). The study was established at a collaborative, private vineyard, in the area of Trilofos-Thessaloniki, at the region of Northern Greece.

Effects of wine versus de-alcoholised wine on the microbiota-gut-brain axis in a tau-pathology murine model of Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common disorder associated with cognitive impairment and the main cause of dementia globally. Multiple evidence in the last decade suggest that the gut microbiome plays an important role in the pathogenesis and progression of AD via the microbiota-gut-brain axis, a network wherein microbiome and the central nervous system crosstalk via endocrine, immune, neural, and microbial metabolites signalling pathways.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.