terclim by ICS banner
IVES 9 IVES Conference Series 9 Learning from remote sensing data: a case study in the Trentino region 

Learning from remote sensing data: a case study in the Trentino region 

Abstract

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy. Trentino, characterized by diverse landscapes ranging from forests to crop fields, is notable for its grapevine cultivation, a significant contributor to the Italian wine industry. Our research aims to analyze the past two decades of satellite data (NASA and Copernicus) using supervised and unsupervised learning methods. The objective is to develop models for soil classification, assessing crop health and growth stage (phenology), and optimizing water management practices, specifically in the context of tree crops (mainly vineyards and apple orchards) in this region. This analytical approach seeks to contribute to a more systematic understanding of the environmental and agricultural dynamics in Trentino, facilitating informed and sustainable land management practices.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marco Moretto1*, Luca Delucchi1, Roberto Zorer1, Pietro Franceschi1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy

Contact the author*

Keywords

machine learning, remote sensing, Trentino, soil, water

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic

Identifying wild Vitis riparia Michx clones as a source of rootstock to mitigate vigour and acclimation/deacclimation cycles of the scion

Grapevine rootstocks have traditionally been chosen in order to manage scion vigour, soil pests and soil conditions. Riparia Gloire de Montpellier (RGM) has been in use since the turn of the 19th century, over 100 years and still a remarkably stable source of phylloxera (Daktulosphaeria vitifoliae Fitch) resistance. The original source material was probably collected near the Missouri/Mississippi river confluence, a mid-continental but more southerly location in the United States. It has been hypothesized that more northerly selections of V. riparia Michx might improve both fall acclimation rate and depth of the scion, thus mitigating late fall frost and midwinter freeze damage.

How sensory quality of wines can be accessed as a trait in MAS grape vine breeding

In the context of the global crises of global warming, biodiversity and pollution, current agricultural practices need to be reconsidered.

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.