terclim by ICS banner
IVES 9 IVES Conference Series 9 Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Abstract

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties. The onset of visible browning of rachis was quantified with ImageJ software analysis in six different table grape varieties (red and white). The varieties investigated are novel table grapes obtained in an ongoing breeding program at CREA-VE in Southern Italy. After harvesting, the bunches were packed in cardboard boxes and stored for two weeks at 2°C with 95% relative humidity to evaluate the shelf-life. The berries were not removed from the grape bunch to follow the onset of browning on the same bunches. Anyway, due to differences in cluster and berry size, the internal area of the rachides was not always visible. Therefore, changes were followed in the apical portion of the rachides. A Specim IQ camera was employed for image detection in the laboratory and the Specim IQ Studio software was used to detect Areas Of Interest (AOIs). Differences in both the visible and Near Infra-Red (NIR) spectral regions were detected before the onset of browning of the rachides. It was possible to observe different changes in the spectral profiles among the varieties.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Teodora Basile1*, Carlo Bergamini1, Lucia Rosaria Forleo1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Antonio Domenico Marsico1, Rocco Perniola1, Luca Nerva2, Walter Chitarra2, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

Vitis vinifera, postharvest, image analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.