terclim by ICS banner
IVES 9 IVES Conference Series 9 Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Abstract

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties. The onset of visible browning of rachis was quantified with ImageJ software analysis in six different table grape varieties (red and white). The varieties investigated are novel table grapes obtained in an ongoing breeding program at CREA-VE in Southern Italy. After harvesting, the bunches were packed in cardboard boxes and stored for two weeks at 2°C with 95% relative humidity to evaluate the shelf-life. The berries were not removed from the grape bunch to follow the onset of browning on the same bunches. Anyway, due to differences in cluster and berry size, the internal area of the rachides was not always visible. Therefore, changes were followed in the apical portion of the rachides. A Specim IQ camera was employed for image detection in the laboratory and the Specim IQ Studio software was used to detect Areas Of Interest (AOIs). Differences in both the visible and Near Infra-Red (NIR) spectral regions were detected before the onset of browning of the rachides. It was possible to observe different changes in the spectral profiles among the varieties.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Teodora Basile1*, Carlo Bergamini1, Lucia Rosaria Forleo1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Antonio Domenico Marsico1, Rocco Perniola1, Luca Nerva2, Walter Chitarra2, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

Vitis vinifera, postharvest, image analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Comparison of plant nutrients in the soil solution and bleeding sap of grapevine cvs

In this study macro and micro nutrients of plants (N = NH4 + NO3 , P, K, Ca, Na, Zn, Mn, Fe and Cu) were determined both in soil solution and bleeding sap and compared each other. Bleeding sap was collected from the nine varieties of grapevine Cvs. grafted on 5BB rootstock and grown in different soil conditions. For all varieties, plant nutrients content in bleeding sap as higher than in soil solution except for Ca and Na. While in soil solution Ca content was found at 10209 ppm, this value in bleeding sap was 49.20 ppm (Kozak Beyazy), 55.38 ppm (Trakya Ylkeren), 50.37 (Cardinal) and 74.27 ppm (Tekirdaô Çekirdeksizi) respectively. For the same varieties the Na values were as follows : 7.16 ppm (in soil solution) : 4.8, 3.23, 4.21,4.58 ppm (in bleeding sap) respectively. K content in bleeding sap was higher than in soil solution for a few varieties, and lower in some varieties. Traces of Fe and Cu were found in both media.