terclim by ICS banner
IVES 9 IVES Conference Series 9 Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Abstract

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.

Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm. Irrigation and drainage volume and macronutrient concentrations were measured bi-weekly. Vegetative growth, leaf mineral composition, and fruit ripening were monitored, and the fruit harvested and analyzed for quality-related parameters.

Vine temporal N uptake across seasons and treatments was largely driven by N availability and water uptake, independently of fruit phenology. N levels affected the composition of other macro and micro-nutrients in diagnostic tissues. A dose-dependent effect of N on plant growth, fruit ripening, yield, and fruit size and composition highlighted doses that improve both yield and quality, and nitrogen use efficiency. Our findings lay the basis for data-driven precision N nutrition in vineyards for optimizing yield, fruit quality, and the environmental sustainability of commercial vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Noam Reshef*1, Patrick Mdemba2,3, Noemi Tel-Zur3, Amnon Lichter4, Uri Yermiyahu2, Yonatan Ron2 Gaston Tanga2,3, Arnon Dag2

1The Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
2Agricultural Research Organization (ARO), Volcani Center, Gilat, Israel
3The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
4The Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel

Contact the author*

Keywords

Nitrogen use efficiency, Fertigation, Precision fertilization, Grape quality, Sustainable agriculture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005).

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries.

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.