terclim by ICS banner
IVES 9 IVES Conference Series 9 Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Abstract

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.

Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm. Irrigation and drainage volume and macronutrient concentrations were measured bi-weekly. Vegetative growth, leaf mineral composition, and fruit ripening were monitored, and the fruit harvested and analyzed for quality-related parameters.

Vine temporal N uptake across seasons and treatments was largely driven by N availability and water uptake, independently of fruit phenology. N levels affected the composition of other macro and micro-nutrients in diagnostic tissues. A dose-dependent effect of N on plant growth, fruit ripening, yield, and fruit size and composition highlighted doses that improve both yield and quality, and nitrogen use efficiency. Our findings lay the basis for data-driven precision N nutrition in vineyards for optimizing yield, fruit quality, and the environmental sustainability of commercial vineyards.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Noam Reshef*1, Patrick Mdemba2,3, Noemi Tel-Zur3, Amnon Lichter4, Uri Yermiyahu2, Yonatan Ron2 Gaston Tanga2,3, Arnon Dag2

1The Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
2Agricultural Research Organization (ARO), Volcani Center, Gilat, Israel
3The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
4The Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel

Contact the author*

Keywords

Nitrogen use efficiency, Fertigation, Precision fertilization, Grape quality, Sustainable agriculture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil

The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the wine grape production climatic potential of that region.