terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Abstract

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.
In this study HSI in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions was tested for determining total soluble solids (TSS), pH and total acidity (TA) of table grapes under laboratory conditions. Imaging of whole bunches as well as individual berries selected from top, middle and bottom positions of bunches was done. The bunches and berries were collected over multiple samples sessions throughout the 2022-23 and 2023-24 seasons allowing for fruit of various maturity levels (unripe though to harvest maturity) to be included. Spectral data was extracted from the images using MATLAB codes developed for this purpose using different analysis approaches. The resulting data is spatial and numerical yielding mean reflectance per pixel across points for entire bunches, and entire berries. Models for determining grape chemical composition were developed using ground-truthing data collected from the sampled fruit. Initial results indicate that this method could be suitable for determining grape ripeness on a bunch or berry level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Rodrigo Oliva-Mancilla1,2, Fikile Wolela1, Eunice Avenant1,3, Carlos Poblete-Echeverría1 *

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602
2 Global technical consultancies, 05 Barn Road, Bergvliet, Cape Town, South Africa, 7945
3 South African Table Grape Industry, PO Box 2932, Paarl, South Africa, 7620

Contact the author*

Keywords

table grapes, hyperspectral imaging, ripeness, quality, spectroscopy

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

The Bergerac guaranteed vintage area « terroirs »

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras.

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.