terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Abstract

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.
In this study HSI in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions was tested for determining total soluble solids (TSS), pH and total acidity (TA) of table grapes under laboratory conditions. Imaging of whole bunches as well as individual berries selected from top, middle and bottom positions of bunches was done. The bunches and berries were collected over multiple samples sessions throughout the 2022-23 and 2023-24 seasons allowing for fruit of various maturity levels (unripe though to harvest maturity) to be included. Spectral data was extracted from the images using MATLAB codes developed for this purpose using different analysis approaches. The resulting data is spatial and numerical yielding mean reflectance per pixel across points for entire bunches, and entire berries. Models for determining grape chemical composition were developed using ground-truthing data collected from the sampled fruit. Initial results indicate that this method could be suitable for determining grape ripeness on a bunch or berry level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Rodrigo Oliva-Mancilla1,2, Fikile Wolela1, Eunice Avenant1,3, Carlos Poblete-Echeverría1 *

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602
2 Global technical consultancies, 05 Barn Road, Bergvliet, Cape Town, South Africa, 7945
3 South African Table Grape Industry, PO Box 2932, Paarl, South Africa, 7620

Contact the author*

Keywords

table grapes, hyperspectral imaging, ripeness, quality, spectroscopy

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Hexose efflux from the peeled grape berry

After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases

Impact of electrolyzed water applied as an alternative treatment in vineyard on grape and wine quality

The main issues in viticulture are to highly decrease the use of phytochemicals. Electrolyzed water (EW) is one of the possible alternative when illness pressure is not too high

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Complantations : enjeux et facteurs de réussite

Dans le cadre de TerclimPro 2025, Coralie Dewasme a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8486