terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Abstract

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.
In this study HSI in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions was tested for determining total soluble solids (TSS), pH and total acidity (TA) of table grapes under laboratory conditions. Imaging of whole bunches as well as individual berries selected from top, middle and bottom positions of bunches was done. The bunches and berries were collected over multiple samples sessions throughout the 2022-23 and 2023-24 seasons allowing for fruit of various maturity levels (unripe though to harvest maturity) to be included. Spectral data was extracted from the images using MATLAB codes developed for this purpose using different analysis approaches. The resulting data is spatial and numerical yielding mean reflectance per pixel across points for entire bunches, and entire berries. Models for determining grape chemical composition were developed using ground-truthing data collected from the sampled fruit. Initial results indicate that this method could be suitable for determining grape ripeness on a bunch or berry level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Rodrigo Oliva-Mancilla1,2, Fikile Wolela1, Eunice Avenant1,3, Carlos Poblete-Echeverría1 *

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602
2 Global technical consultancies, 05 Barn Road, Bergvliet, Cape Town, South Africa, 7945
3 South African Table Grape Industry, PO Box 2932, Paarl, South Africa, 7620

Contact the author*

Keywords

table grapes, hyperspectral imaging, ripeness, quality, spectroscopy

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Thermal conditions during the grape ripening period in viticulture geoclimate. Cool night index and thermal amplitude

Le régime thermique en période de maturation du raisin est l’une des variables déterminantes de la coloration du raisin et de la richesse en arômes, anthocyanes et polyphénols des vins.

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

«Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

Vine cultivar Mourvèdre is present all around the Mediterranean area and is interesting for its tannins and the specificity of its aromas.

Pedicel lenticel diversity of cultivars and their influence on cell death and berry shrivel

Shrinking berries are the common symptoms of Berry Shrivel (BS) and Late-Season-Dehydration (LSD) in grapevine cultivars.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.