terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Abstract

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.
In this study HSI in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions was tested for determining total soluble solids (TSS), pH and total acidity (TA) of table grapes under laboratory conditions. Imaging of whole bunches as well as individual berries selected from top, middle and bottom positions of bunches was done. The bunches and berries were collected over multiple samples sessions throughout the 2022-23 and 2023-24 seasons allowing for fruit of various maturity levels (unripe though to harvest maturity) to be included. Spectral data was extracted from the images using MATLAB codes developed for this purpose using different analysis approaches. The resulting data is spatial and numerical yielding mean reflectance per pixel across points for entire bunches, and entire berries. Models for determining grape chemical composition were developed using ground-truthing data collected from the sampled fruit. Initial results indicate that this method could be suitable for determining grape ripeness on a bunch or berry level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Rodrigo Oliva-Mancilla1,2, Fikile Wolela1, Eunice Avenant1,3, Carlos Poblete-Echeverría1 *

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602
2 Global technical consultancies, 05 Barn Road, Bergvliet, Cape Town, South Africa, 7945
3 South African Table Grape Industry, PO Box 2932, Paarl, South Africa, 7620

Contact the author*

Keywords

table grapes, hyperspectral imaging, ripeness, quality, spectroscopy

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions.