terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Abstract

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.
In this study HSI in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions was tested for determining total soluble solids (TSS), pH and total acidity (TA) of table grapes under laboratory conditions. Imaging of whole bunches as well as individual berries selected from top, middle and bottom positions of bunches was done. The bunches and berries were collected over multiple samples sessions throughout the 2022-23 and 2023-24 seasons allowing for fruit of various maturity levels (unripe though to harvest maturity) to be included. Spectral data was extracted from the images using MATLAB codes developed for this purpose using different analysis approaches. The resulting data is spatial and numerical yielding mean reflectance per pixel across points for entire bunches, and entire berries. Models for determining grape chemical composition were developed using ground-truthing data collected from the sampled fruit. Initial results indicate that this method could be suitable for determining grape ripeness on a bunch or berry level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Rodrigo Oliva-Mancilla1,2, Fikile Wolela1, Eunice Avenant1,3, Carlos Poblete-Echeverría1 *

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602
2 Global technical consultancies, 05 Barn Road, Bergvliet, Cape Town, South Africa, 7945
3 South African Table Grape Industry, PO Box 2932, Paarl, South Africa, 7620

Contact the author*

Keywords

table grapes, hyperspectral imaging, ripeness, quality, spectroscopy

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations