terclim by ICS banner
IVES 9 IVES Conference Series 9 Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Abstract

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.

To maintain the socio-economic impact of this sector, new challenges need to be addressed. As for the entire agrifood sector, table grape production faces decreasing water availability, increasing temperatures, but also with fungal diseases, all consequences of climate change. Moreover, the need to align with new market trends is growing the interest of the researchers. In this context, new opportunities are emerging in the sector of ready-to-eat grapes with higher shelf-life, especially for major exporting countries such as Chile, Italy, and USA.  This area of the market is currently dominated with the production of raisins for snacks, while the possibility of allocating part of the grape production to fresh-cut markets is less explored. Strategies to improve postharvest performances, reduce fungi attacks and postharvest decay of existing or new table grapes varieties are essential in this latter context. 

Current literature and ongoing projects highlight the importance of developing strategies that combine breeding and sustainable management to cope with these new challenges and open new perspectives. Exploring the wide biodiversity and studying the physiological and molecular responses of different cultivars to identify involved genes is becoming fundamental to select new genotypes better adapted to the changed environment and consumers’ needs. Moreover, a faster improvement might be obtained by combining breeding with innovative and sustainable technologies in pre- and postharvest stages to increase resilience, quality, and shelf-life.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Francesca Cardone1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Table grape, quality and shelf-life, sustainability, postharvest, ready-to-eat

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Dans la region Nord-Est du Brésil, située à la Vallée du São Francisco, localiséee entre les paralleles 8-9º HS, la production de vins tropicaux a commencé il y a une vigntaine d’années. Dans cette région, il est possible d’avoir au minimum deux récoltes par an, car la moyenne de température est de 26 ºC, avec une pluviosité moyenne de 550 mm entre les mois de janvier-avril.

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture.

New insight the pinking phenomena of white wine

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.