terclim by ICS banner
IVES 9 IVES Conference Series 9 Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Abstract

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.

To maintain the socio-economic impact of this sector, new challenges need to be addressed. As for the entire agrifood sector, table grape production faces decreasing water availability, increasing temperatures, but also with fungal diseases, all consequences of climate change. Moreover, the need to align with new market trends is growing the interest of the researchers. In this context, new opportunities are emerging in the sector of ready-to-eat grapes with higher shelf-life, especially for major exporting countries such as Chile, Italy, and USA.  This area of the market is currently dominated with the production of raisins for snacks, while the possibility of allocating part of the grape production to fresh-cut markets is less explored. Strategies to improve postharvest performances, reduce fungi attacks and postharvest decay of existing or new table grapes varieties are essential in this latter context. 

Current literature and ongoing projects highlight the importance of developing strategies that combine breeding and sustainable management to cope with these new challenges and open new perspectives. Exploring the wide biodiversity and studying the physiological and molecular responses of different cultivars to identify involved genes is becoming fundamental to select new genotypes better adapted to the changed environment and consumers’ needs. Moreover, a faster improvement might be obtained by combining breeding with innovative and sustainable technologies in pre- and postharvest stages to increase resilience, quality, and shelf-life.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Francesca Cardone1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Table grape, quality and shelf-life, sustainability, postharvest, ready-to-eat

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.