terclim by ICS banner
IVES 9 IVES Conference Series 9 Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Abstract

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.

To maintain the socio-economic impact of this sector, new challenges need to be addressed. As for the entire agrifood sector, table grape production faces decreasing water availability, increasing temperatures, but also with fungal diseases, all consequences of climate change. Moreover, the need to align with new market trends is growing the interest of the researchers. In this context, new opportunities are emerging in the sector of ready-to-eat grapes with higher shelf-life, especially for major exporting countries such as Chile, Italy, and USA.  This area of the market is currently dominated with the production of raisins for snacks, while the possibility of allocating part of the grape production to fresh-cut markets is less explored. Strategies to improve postharvest performances, reduce fungi attacks and postharvest decay of existing or new table grapes varieties are essential in this latter context. 

Current literature and ongoing projects highlight the importance of developing strategies that combine breeding and sustainable management to cope with these new challenges and open new perspectives. Exploring the wide biodiversity and studying the physiological and molecular responses of different cultivars to identify involved genes is becoming fundamental to select new genotypes better adapted to the changed environment and consumers’ needs. Moreover, a faster improvement might be obtained by combining breeding with innovative and sustainable technologies in pre- and postharvest stages to increase resilience, quality, and shelf-life.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Francesca Cardone1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Table grape, quality and shelf-life, sustainability, postharvest, ready-to-eat

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The true cost of the vineyard landscape enhancement. First results in the Venezia biodistrict 

The research is part of the “Ecovinegoals” project, financed by Interreg Adrion funds. It aims to encourage the adoption and dissemination of agroecological practices in intensive wine-growing areas. The study focuses on cost analysis of the wine-growing landscape enhancement in an organic winery in order to provide a useful tool for winemakers to direct their investments in green infrastructures. One of the Italian pilot areas of the Ecovinegoals project is the Venezia Biodistrict, characterized by viticulture in a flat reclamation area of 105,800 hectares.

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.