terclim by ICS banner
IVES 9 IVES Conference Series 9 Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Abstract

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.

To maintain the socio-economic impact of this sector, new challenges need to be addressed. As for the entire agrifood sector, table grape production faces decreasing water availability, increasing temperatures, but also with fungal diseases, all consequences of climate change. Moreover, the need to align with new market trends is growing the interest of the researchers. In this context, new opportunities are emerging in the sector of ready-to-eat grapes with higher shelf-life, especially for major exporting countries such as Chile, Italy, and USA.  This area of the market is currently dominated with the production of raisins for snacks, while the possibility of allocating part of the grape production to fresh-cut markets is less explored. Strategies to improve postharvest performances, reduce fungi attacks and postharvest decay of existing or new table grapes varieties are essential in this latter context. 

Current literature and ongoing projects highlight the importance of developing strategies that combine breeding and sustainable management to cope with these new challenges and open new perspectives. Exploring the wide biodiversity and studying the physiological and molecular responses of different cultivars to identify involved genes is becoming fundamental to select new genotypes better adapted to the changed environment and consumers’ needs. Moreover, a faster improvement might be obtained by combining breeding with innovative and sustainable technologies in pre- and postharvest stages to increase resilience, quality, and shelf-life.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Francesca Cardone1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Table grape, quality and shelf-life, sustainability, postharvest, ready-to-eat

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).