terclim by ICS banner
IVES 9 IVES Conference Series 9 Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Abstract

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.

To maintain the socio-economic impact of this sector, new challenges need to be addressed. As for the entire agrifood sector, table grape production faces decreasing water availability, increasing temperatures, but also with fungal diseases, all consequences of climate change. Moreover, the need to align with new market trends is growing the interest of the researchers. In this context, new opportunities are emerging in the sector of ready-to-eat grapes with higher shelf-life, especially for major exporting countries such as Chile, Italy, and USA.  This area of the market is currently dominated with the production of raisins for snacks, while the possibility of allocating part of the grape production to fresh-cut markets is less explored. Strategies to improve postharvest performances, reduce fungi attacks and postharvest decay of existing or new table grapes varieties are essential in this latter context. 

Current literature and ongoing projects highlight the importance of developing strategies that combine breeding and sustainable management to cope with these new challenges and open new perspectives. Exploring the wide biodiversity and studying the physiological and molecular responses of different cultivars to identify involved genes is becoming fundamental to select new genotypes better adapted to the changed environment and consumers’ needs. Moreover, a faster improvement might be obtained by combining breeding with innovative and sustainable technologies in pre- and postharvest stages to increase resilience, quality, and shelf-life.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Francesca Cardone1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Table grape, quality and shelf-life, sustainability, postharvest, ready-to-eat

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...