OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Abstract

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively. 

From the results of extraction methods, we applied the chosen methods and further combined the HTS tools of metabarcoding and metagenomics, to characterise how microbial communities of those samples, and their subsequent spontaneously fermented derivatives, vary. We specifically explored microbial community variation related to vineyard level, and during alcoholic fermentation. The vineyard was shown to be strongly influencing the microbial communities. Functional analyses were additionally included to investigate the microbial interactions. An increase in non-Saccharomycetaceae fungal functions and a decrease in bacterial functions were also observed during the early fermentation stage. Overall, our results highlight the importance of standardizing DNA extraction methods when characterising fungal diversity from wine and related samples, and showcase how metagenomic functional analysis offer possibilities to improve our insights into the wine alcoholic fermentation process, including highlighting microbe interactions.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sarah Siu Tze Mak, Kimmo Sirén, Christian Carøe, Ulrich Fischer, M. Thomas P. Gilbert 

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 
Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany 

Contact the author

Keywords

Riesling, Metabarcoding, Metagenomics, DNA extraction

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.