OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Abstract

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively. 

From the results of extraction methods, we applied the chosen methods and further combined the HTS tools of metabarcoding and metagenomics, to characterise how microbial communities of those samples, and their subsequent spontaneously fermented derivatives, vary. We specifically explored microbial community variation related to vineyard level, and during alcoholic fermentation. The vineyard was shown to be strongly influencing the microbial communities. Functional analyses were additionally included to investigate the microbial interactions. An increase in non-Saccharomycetaceae fungal functions and a decrease in bacterial functions were also observed during the early fermentation stage. Overall, our results highlight the importance of standardizing DNA extraction methods when characterising fungal diversity from wine and related samples, and showcase how metagenomic functional analysis offer possibilities to improve our insights into the wine alcoholic fermentation process, including highlighting microbe interactions.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sarah Siu Tze Mak, Kimmo Sirén, Christian Carøe, Ulrich Fischer, M. Thomas P. Gilbert 

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 
Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany 

Contact the author

Keywords

Riesling, Metabarcoding, Metagenomics, DNA extraction

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.