Terroir 2016 banner
IVES 9 IVES Conference Series 9 Tasting soils in Pinot noir wines of the Willamette valley, Oregon

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

Abstract

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils. A common thread here is pH, an objectively measurable variable that is both a part of wine taste and a proxy for soil fertility. The role of low-pH soils is supported by metadata on Oregon wines from different soils in the Willamette Valley of Oregon, USA, which show significant inverse correlations between minimum pH of the soil and pH of finished Pinot Noir wine. There is also a direct correlation between depth of clayey horizons and pH of the finished wine.

The minimum pH of these soils is near the base of the clayey (Bw or Bt) horizon and is inversely correlated with depth of the clayey horizon. Low soil pH is found in thick middle Pleistocene soils of bedrock (Jory, Willakenzie, Laurelwood, and Bellpine soil series) and high soil pH in thin soils on late Pleistocene and Holocene Missoula Flood deposits and loess (Hazelair, Woodburn, and Chehulpum soil series). Similar relationships are found between soil pH or depth and the pH of grapes at harvest, which is lower and more varied than pH in finished wine. These relationships are especially notable in years of good harvest, but obscured by wine- making techniques in years of poor harvest. Good harvest years are not necessarily vintages esteemed by wine connoisseurs, which are more strongly correlated with low October precipitation.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Gregory J. Retallak (1) and Scott F. Burns (2)

(1) Dept. of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA
(2) Dept. of Geology, Portland State University, Portland, Oregon 97207, USA

Contact the author

Keywords

Pinot Noir, mineralogy, wine chemistry, soil chemistry, sensory analysis

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: grape and must composition

This work discusses the effects of soil and weather conditions on the grape composition of cv. Tempranillo in four different locations of Spain, during the 2008-2011 seasons.