Terroir 2016 banner
IVES 9 IVES Conference Series 9 Tasting soils in Pinot noir wines of the Willamette valley, Oregon

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

Abstract

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils. A common thread here is pH, an objectively measurable variable that is both a part of wine taste and a proxy for soil fertility. The role of low-pH soils is supported by metadata on Oregon wines from different soils in the Willamette Valley of Oregon, USA, which show significant inverse correlations between minimum pH of the soil and pH of finished Pinot Noir wine. There is also a direct correlation between depth of clayey horizons and pH of the finished wine.

The minimum pH of these soils is near the base of the clayey (Bw or Bt) horizon and is inversely correlated with depth of the clayey horizon. Low soil pH is found in thick middle Pleistocene soils of bedrock (Jory, Willakenzie, Laurelwood, and Bellpine soil series) and high soil pH in thin soils on late Pleistocene and Holocene Missoula Flood deposits and loess (Hazelair, Woodburn, and Chehulpum soil series). Similar relationships are found between soil pH or depth and the pH of grapes at harvest, which is lower and more varied than pH in finished wine. These relationships are especially notable in years of good harvest, but obscured by wine- making techniques in years of poor harvest. Good harvest years are not necessarily vintages esteemed by wine connoisseurs, which are more strongly correlated with low October precipitation.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Gregory J. Retallak (1) and Scott F. Burns (2)

(1) Dept. of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA
(2) Dept. of Geology, Portland State University, Portland, Oregon 97207, USA

Contact the author

Keywords

Pinot Noir, mineralogy, wine chemistry, soil chemistry, sensory analysis

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Irrigation frequency: variation and agronomic and qualitative effects on cv. Tempranillo in the D. O. Ribera del Duero

The application of irrigation in vineyard cultivation continues to be a highly debated aspect in terms of the quantity and distribution of water throughout the vegetative growth period.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.