OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Abstract

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations. The comprehensive dataset comprised microbial growth and fermentation kinetics, primary metabolites and 90 volatile compounds. The common traits of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation ability (>7.3 % v/v EtOH), low production of acetic acid and formation of lactic acid. A seven-fold variation was observed in concentrations of lactate (1.8 – 12 g/L), significantly affecting the wine pH (3.2 – 3.8). Besides the strain-derived variation (significant effect on 80/114 parameters), the metabolic dataset showed separation of pre-determined L. thermotolerans genetic groups. The superior L. thermotolerans strains were further evaluated in co-inoculations and sequential inoculations with Saccharomyces cerevisiae, required for fermentation completion. The chemical and sensory modulations in wines further highlighted the potential of L. thermotolerans strains to produce ‘fresher’ wines with lower ethanol content and improved flavour/balance.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Hranilovic (1,2), Vladimir Jiranek (2, 3), Paul R. Grbin (2), Joanna M. Gambetta (4), Leigh Schmidtke (4), Paul K. Boss (5), Joana Coulon (6), Isabelle Masneuf-Pomarede (1,7), Marina Bely (1), Warren Albertin (1,8) 

1. Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Department of Wine and Food Science, The University of Adelaide, Adelaide, AU
3. The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, AU
4. National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, AU 
5. CSIRO Agriculture and Food, Adelaide, AU 
6. Biolaffort, Floirac, FR 
7. Bordeaux Sciences Agro, Gradignan, FR 
8. ENSCBP, Bordeaux INP, Pessac, FR 

Contact the author

Keywords

Lachancea thermotolerans, non-Saccharomyces yeasts, population diversity ,wine composition

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety.

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.