OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Abstract

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations. The comprehensive dataset comprised microbial growth and fermentation kinetics, primary metabolites and 90 volatile compounds. The common traits of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation ability (>7.3 % v/v EtOH), low production of acetic acid and formation of lactic acid. A seven-fold variation was observed in concentrations of lactate (1.8 – 12 g/L), significantly affecting the wine pH (3.2 – 3.8). Besides the strain-derived variation (significant effect on 80/114 parameters), the metabolic dataset showed separation of pre-determined L. thermotolerans genetic groups. The superior L. thermotolerans strains were further evaluated in co-inoculations and sequential inoculations with Saccharomyces cerevisiae, required for fermentation completion. The chemical and sensory modulations in wines further highlighted the potential of L. thermotolerans strains to produce ‘fresher’ wines with lower ethanol content and improved flavour/balance.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Hranilovic (1,2), Vladimir Jiranek (2, 3), Paul R. Grbin (2), Joanna M. Gambetta (4), Leigh Schmidtke (4), Paul K. Boss (5), Joana Coulon (6), Isabelle Masneuf-Pomarede (1,7), Marina Bely (1), Warren Albertin (1,8) 

1. Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Department of Wine and Food Science, The University of Adelaide, Adelaide, AU
3. The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, AU
4. National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, AU 
5. CSIRO Agriculture and Food, Adelaide, AU 
6. Biolaffort, Floirac, FR 
7. Bordeaux Sciences Agro, Gradignan, FR 
8. ENSCBP, Bordeaux INP, Pessac, FR 

Contact the author

Keywords

Lachancea thermotolerans, non-Saccharomyces yeasts, population diversity ,wine composition

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

Which microorganisms contribute to mousy off-flavour in our wines?

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about Which microorganisms contribute to mousy off-flavour in owines. This presentation is based on articles accessible for free on OENO One and IVES Technical Reviews.

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).