OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Abstract

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations. The comprehensive dataset comprised microbial growth and fermentation kinetics, primary metabolites and 90 volatile compounds. The common traits of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation ability (>7.3 % v/v EtOH), low production of acetic acid and formation of lactic acid. A seven-fold variation was observed in concentrations of lactate (1.8 – 12 g/L), significantly affecting the wine pH (3.2 – 3.8). Besides the strain-derived variation (significant effect on 80/114 parameters), the metabolic dataset showed separation of pre-determined L. thermotolerans genetic groups. The superior L. thermotolerans strains were further evaluated in co-inoculations and sequential inoculations with Saccharomyces cerevisiae, required for fermentation completion. The chemical and sensory modulations in wines further highlighted the potential of L. thermotolerans strains to produce ‘fresher’ wines with lower ethanol content and improved flavour/balance.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Hranilovic (1,2), Vladimir Jiranek (2, 3), Paul R. Grbin (2), Joanna M. Gambetta (4), Leigh Schmidtke (4), Paul K. Boss (5), Joana Coulon (6), Isabelle Masneuf-Pomarede (1,7), Marina Bely (1), Warren Albertin (1,8) 

1. Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Department of Wine and Food Science, The University of Adelaide, Adelaide, AU
3. The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, AU
4. National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, AU 
5. CSIRO Agriculture and Food, Adelaide, AU 
6. Biolaffort, Floirac, FR 
7. Bordeaux Sciences Agro, Gradignan, FR 
8. ENSCBP, Bordeaux INP, Pessac, FR 

Contact the author

Keywords

Lachancea thermotolerans, non-Saccharomyces yeasts, population diversity ,wine composition

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Studying PIWIs in three dimensions: agronomic, economic and ecological evaluation of 14 fungus-tolerant cultivars in Luxembourg

Growing fungus-tolerant cultivars (PIWIs) reduces the need of fungicide use by 50-80 %. PIWIs have the potential to address climate change adaptation and mitigation simultaneously.

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.