OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Abstract

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

In this study, we investigated the stability mechanism of Asen and its HIC fractions towards the iron hexacyanoferrate – calcium and polyphenols flocculation in hydro-alcoholic solutions and unstable young red wine. The AGPs prevented the colloidal instability of both iron hexacyanoferrate salts and polyphenols in hydro-alcoholic solutions and young red wine with a good correlation between results obtained on both systems. The iron hexacyanoferrate salts was stabilized by electrostatic binding of Asen with calcium, the driver of the flocculation. Experiments performed with HIC fractions showed that the functional property of Asen was only determined by the presence of the AGP rich in proteins (HIC-F2 and HIC-F3 fractions containing 6.3 and 13.8 % of proteins, respectively). HIC-F1, the major fraction in weight that contained 0.5 % of proteins, was thus devoid of colloidal stability properties. The ability of AGP rich in proteins to colloidally stabilize polyphenols was confirmed in a hydro-alcoholic matrix containing polyphenols and unstable young red wines. Moreover, the richer in proteins is the AGP, the best are their colloidal stabilizing properties. The differences observed in the protective activity between AGPs from the three HIC fractions are relied to their protein content but also to their related rate of glycosylation that modulates the protein accessibility to its environment, then their physicochemical properties.

references:

[1] Williams, P.A.; Phillips, G.O., Gum arabic. pp 155-168, In Handbook of Hydrocolloids, 2000, CRC Press, Boca Raton, FL.
[2] Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A; Schultz, C.J., Plant Mol. Biol., 2001, 47, 161-176.
[3] Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.C. ; Sanchez, C., Biomacromolecules, 2006, 7, 2637-2649.
[4] Randall, R.C.; Phillips, G.O.; Williams, P.A., Food Hydrocolloids, 1989, 3, 65-75.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Michaël Nigen, Rafael Apolinar-Valiente, Pascale Williams,Thierry Doco, Néréa Iturmendi, Virginie Moine, Isabelle Jaouen, Christian Sanchez

UMR IATE Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
UMR SPO Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
BioLaffort (Floirac, FRANCE)
Alland & Robert 

Contact the author

Keywords

Colloidal stabilization, Acacia gum, Coloring matter, Young red wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.

An operational model for capturing grape ripening dynamics to support harvest decisions

Grape ripening is a critical phenophase during which many metabolites driving wine quality are accumulated in berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.