OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Abstract

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

In this study, we investigated the stability mechanism of Asen and its HIC fractions towards the iron hexacyanoferrate – calcium and polyphenols flocculation in hydro-alcoholic solutions and unstable young red wine. The AGPs prevented the colloidal instability of both iron hexacyanoferrate salts and polyphenols in hydro-alcoholic solutions and young red wine with a good correlation between results obtained on both systems. The iron hexacyanoferrate salts was stabilized by electrostatic binding of Asen with calcium, the driver of the flocculation. Experiments performed with HIC fractions showed that the functional property of Asen was only determined by the presence of the AGP rich in proteins (HIC-F2 and HIC-F3 fractions containing 6.3 and 13.8 % of proteins, respectively). HIC-F1, the major fraction in weight that contained 0.5 % of proteins, was thus devoid of colloidal stability properties. The ability of AGP rich in proteins to colloidally stabilize polyphenols was confirmed in a hydro-alcoholic matrix containing polyphenols and unstable young red wines. Moreover, the richer in proteins is the AGP, the best are their colloidal stabilizing properties. The differences observed in the protective activity between AGPs from the three HIC fractions are relied to their protein content but also to their related rate of glycosylation that modulates the protein accessibility to its environment, then their physicochemical properties.

references:

[1] Williams, P.A.; Phillips, G.O., Gum arabic. pp 155-168, In Handbook of Hydrocolloids, 2000, CRC Press, Boca Raton, FL.
[2] Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A; Schultz, C.J., Plant Mol. Biol., 2001, 47, 161-176.
[3] Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.C. ; Sanchez, C., Biomacromolecules, 2006, 7, 2637-2649.
[4] Randall, R.C.; Phillips, G.O.; Williams, P.A., Food Hydrocolloids, 1989, 3, 65-75.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Michaël Nigen, Rafael Apolinar-Valiente, Pascale Williams,Thierry Doco, Néréa Iturmendi, Virginie Moine, Isabelle Jaouen, Christian Sanchez

UMR IATE Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
UMR SPO Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
BioLaffort (Floirac, FRANCE)
Alland & Robert 

Contact the author

Keywords

Colloidal stabilization, Acacia gum, Coloring matter, Young red wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Influence of the “terroir” (soil, climate and wine grower) on the quality of red Grenache wines in the Rhône Valley

«L’Observatoire Grenache» est un réseau de parcelles qui a été mis en place par l’Institut Rhodanien en Vallée du Rhône sur les millésimes de 1995 à 1999. Composé de 24 parcelles de Vitis vinifera L. cv Grenache noir, ce réseau vise à étudier l’influence du terroir (sol, climat et vigneron) sur la qualité des vins. Les parcelles ont été choisies afin de représenter différentes situations géographiques et géopédologiques de la vallée du Rhône. Le matériel végétal (clone, porte-greffe), la taille (cordon de Royat), la densité et l’âge de la parcelle ont été encadrées. Ainsi les conditions de milieu (sol, climat) et les pratiques du vigneron étaient les principales sources de variations.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density