OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Abstract

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

In this study, we investigated the stability mechanism of Asen and its HIC fractions towards the iron hexacyanoferrate – calcium and polyphenols flocculation in hydro-alcoholic solutions and unstable young red wine. The AGPs prevented the colloidal instability of both iron hexacyanoferrate salts and polyphenols in hydro-alcoholic solutions and young red wine with a good correlation between results obtained on both systems. The iron hexacyanoferrate salts was stabilized by electrostatic binding of Asen with calcium, the driver of the flocculation. Experiments performed with HIC fractions showed that the functional property of Asen was only determined by the presence of the AGP rich in proteins (HIC-F2 and HIC-F3 fractions containing 6.3 and 13.8 % of proteins, respectively). HIC-F1, the major fraction in weight that contained 0.5 % of proteins, was thus devoid of colloidal stability properties. The ability of AGP rich in proteins to colloidally stabilize polyphenols was confirmed in a hydro-alcoholic matrix containing polyphenols and unstable young red wines. Moreover, the richer in proteins is the AGP, the best are their colloidal stabilizing properties. The differences observed in the protective activity between AGPs from the three HIC fractions are relied to their protein content but also to their related rate of glycosylation that modulates the protein accessibility to its environment, then their physicochemical properties.

references:

[1] Williams, P.A.; Phillips, G.O., Gum arabic. pp 155-168, In Handbook of Hydrocolloids, 2000, CRC Press, Boca Raton, FL.
[2] Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A; Schultz, C.J., Plant Mol. Biol., 2001, 47, 161-176.
[3] Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.C. ; Sanchez, C., Biomacromolecules, 2006, 7, 2637-2649.
[4] Randall, R.C.; Phillips, G.O.; Williams, P.A., Food Hydrocolloids, 1989, 3, 65-75.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Michaël Nigen, Rafael Apolinar-Valiente, Pascale Williams,Thierry Doco, Néréa Iturmendi, Virginie Moine, Isabelle Jaouen, Christian Sanchez

UMR IATE Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
UMR SPO Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
BioLaffort (Floirac, FRANCE)
Alland & Robert 

Contact the author

Keywords

Colloidal stabilization, Acacia gum, Coloring matter, Young red wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Postharvest elicitors and metabolic changes in wine grape berries

Wine grape berries respond to postharvest treatments with specific gaseous elicitors in terms of metabolic changes and composition. Short-term (3 days) high (30 KPa) CO2 treatment affects phenol compound concentration in skins of ‘Trebbiano toscano’ berries.

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.