OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Abstract

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

In this study, we investigated the stability mechanism of Asen and its HIC fractions towards the iron hexacyanoferrate – calcium and polyphenols flocculation in hydro-alcoholic solutions and unstable young red wine. The AGPs prevented the colloidal instability of both iron hexacyanoferrate salts and polyphenols in hydro-alcoholic solutions and young red wine with a good correlation between results obtained on both systems. The iron hexacyanoferrate salts was stabilized by electrostatic binding of Asen with calcium, the driver of the flocculation. Experiments performed with HIC fractions showed that the functional property of Asen was only determined by the presence of the AGP rich in proteins (HIC-F2 and HIC-F3 fractions containing 6.3 and 13.8 % of proteins, respectively). HIC-F1, the major fraction in weight that contained 0.5 % of proteins, was thus devoid of colloidal stability properties. The ability of AGP rich in proteins to colloidally stabilize polyphenols was confirmed in a hydro-alcoholic matrix containing polyphenols and unstable young red wines. Moreover, the richer in proteins is the AGP, the best are their colloidal stabilizing properties. The differences observed in the protective activity between AGPs from the three HIC fractions are relied to their protein content but also to their related rate of glycosylation that modulates the protein accessibility to its environment, then their physicochemical properties.

references:

[1] Williams, P.A.; Phillips, G.O., Gum arabic. pp 155-168, In Handbook of Hydrocolloids, 2000, CRC Press, Boca Raton, FL.
[2] Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A; Schultz, C.J., Plant Mol. Biol., 2001, 47, 161-176.
[3] Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.C. ; Sanchez, C., Biomacromolecules, 2006, 7, 2637-2649.
[4] Randall, R.C.; Phillips, G.O.; Williams, P.A., Food Hydrocolloids, 1989, 3, 65-75.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Michaël Nigen, Rafael Apolinar-Valiente, Pascale Williams,Thierry Doco, Néréa Iturmendi, Virginie Moine, Isabelle Jaouen, Christian Sanchez

UMR IATE Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
UMR SPO Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
BioLaffort (Floirac, FRANCE)
Alland & Robert 

Contact the author

Keywords

Colloidal stabilization, Acacia gum, Coloring matter, Young red wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Smart microgrid: how to reduce costs and CO2 emissions in wineries and vineyards

The wine sector is greatly threatened by climate change, but is also one of its contributors.

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

Sviluppo di una metodologia di tracciabilità e definizione dell’impronta petrochimica in suoli e vini della Sicilia occidentale nella piana di Marsala (TP)

I risultati delle ricerche condotte in un vigneto sperimentale di Marsala (TP), scelto per omogeneità di fattori bio-agronomici (età, tecniche colturali, potenzialità vegetativa e produttiva)

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2].

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,