OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Abstract

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

In this study, we investigated the stability mechanism of Asen and its HIC fractions towards the iron hexacyanoferrate – calcium and polyphenols flocculation in hydro-alcoholic solutions and unstable young red wine. The AGPs prevented the colloidal instability of both iron hexacyanoferrate salts and polyphenols in hydro-alcoholic solutions and young red wine with a good correlation between results obtained on both systems. The iron hexacyanoferrate salts was stabilized by electrostatic binding of Asen with calcium, the driver of the flocculation. Experiments performed with HIC fractions showed that the functional property of Asen was only determined by the presence of the AGP rich in proteins (HIC-F2 and HIC-F3 fractions containing 6.3 and 13.8 % of proteins, respectively). HIC-F1, the major fraction in weight that contained 0.5 % of proteins, was thus devoid of colloidal stability properties. The ability of AGP rich in proteins to colloidally stabilize polyphenols was confirmed in a hydro-alcoholic matrix containing polyphenols and unstable young red wines. Moreover, the richer in proteins is the AGP, the best are their colloidal stabilizing properties. The differences observed in the protective activity between AGPs from the three HIC fractions are relied to their protein content but also to their related rate of glycosylation that modulates the protein accessibility to its environment, then their physicochemical properties.

references:

[1] Williams, P.A.; Phillips, G.O., Gum arabic. pp 155-168, In Handbook of Hydrocolloids, 2000, CRC Press, Boca Raton, FL.
[2] Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A; Schultz, C.J., Plant Mol. Biol., 2001, 47, 161-176.
[3] Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.C. ; Sanchez, C., Biomacromolecules, 2006, 7, 2637-2649.
[4] Randall, R.C.; Phillips, G.O.; Williams, P.A., Food Hydrocolloids, 1989, 3, 65-75.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Michaël Nigen, Rafael Apolinar-Valiente, Pascale Williams,Thierry Doco, Néréa Iturmendi, Virginie Moine, Isabelle Jaouen, Christian Sanchez

UMR IATE Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
UMR SPO Université Montpellier – Montpellier SupAgro – INRA – CIRAD 2 place Pierre Viala, Bâtiment 31 34060 Montpellier 
BioLaffort (Floirac, FRANCE)
Alland & Robert 

Contact the author

Keywords

Colloidal stabilization, Acacia gum, Coloring matter, Young red wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Postharvest elicitors and metabolic changes in wine grape berries

Wine grape berries respond to postharvest treatments with specific gaseous elicitors in terms of metabolic changes and composition. Short-term (3 days) high (30 KPa) CO2 treatment affects phenol compound concentration in skins of ‘Trebbiano toscano’ berries.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.