Terroir 2016 banner
IVES 9 IVES Conference Series 9 Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Abstract

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA. As of September 2013, the region is home to 82 vineyards, 513 hectares (1268 acres), 36 wineries and 41 different varieties of Vitus Vinifera, with Pinot Noir being the most widely planted grape variety in both AVAs. To better understand the physical factors affecting Oregon and Washington wine, this project analyzes the climate, topography, geology and soil at vineyards in the CGWR using Geographic Information Systems and existing earth science databases.

Vineyards range in elevation from 29 to 548 meters (95 to 1799 feet). The microclimates vary within this relatively small wine region, allowing for diversity in grape varieties planted. Three Winkler climate regimes are represented within the CGWR, including Regions Ia, Ib, and II from the Winkler Index (Jones et al., 2010). The average growing season temperatures range from 13.7°C (55.7°F) to 17.7°C (63.9°F) and the average growing degree-days range from 871 for °C (1567 for °F) to 1664 for °C (2994 °F). 58% of the vineyards are characterized within an intermediate climatic regime, 29% are within a cool climatic regime, 9% are within a warm climatic regime and 4% are on the boundaries between a cool, intermediate or warm regime. The growing degrees days calculated for the CGWR are similar to those measured in the Willamette Valley, Oregon, Burgundy, France, Umpqua Valley AVA, Oregon and Bordeaux, France.

All of the soils used to grow grapes are well drained and within a xeric moisture regime. 30 soil types are represented among the vineyard sites, with the Chemawa Series (Underwood Mountain) and Walla Walla Series (eastern portions) being dominant. Majority of the soils contain a silt loam texture, with 46.5% of the total vineyard acreage planted on soils formed in loess from eastern Washington and Oregon. The Missoula Floods influence the texture and age of the soil in this region, with skeletal textures close to the Columbia River and finer textures at higher elevations. Other common geological deposits at vineyards in the CGWR include, Quaternary Basalt (19.6%), Missoula Flood deposits (9.1%), The Dalles Formation (8.0%), Columbia River Basalt Group (7.5%), Pliocene Basalt (3.0%), Quaternary Surficial deposits (3.0%), lahars (2.3%) and Quaternary Basaltic Andesite and Andesite (0.9%).

Common geological deposits, soil series, and climate conditions at vineyard sites vary spatially in the region, making this one of the most diverse wine regions in terms of growing conditions in the Pacific Northwest.

Related articles…

Genome wide association mapping of phenology related traits in Vitis vinifera L

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered.

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.