Terroir 2016 banner
IVES 9 IVES Conference Series 9 Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Abstract

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA. As of September 2013, the region is home to 82 vineyards, 513 hectares (1268 acres), 36 wineries and 41 different varieties of Vitus Vinifera, with Pinot Noir being the most widely planted grape variety in both AVAs. To better understand the physical factors affecting Oregon and Washington wine, this project analyzes the climate, topography, geology and soil at vineyards in the CGWR using Geographic Information Systems and existing earth science databases.

Vineyards range in elevation from 29 to 548 meters (95 to 1799 feet). The microclimates vary within this relatively small wine region, allowing for diversity in grape varieties planted. Three Winkler climate regimes are represented within the CGWR, including Regions Ia, Ib, and II from the Winkler Index (Jones et al., 2010). The average growing season temperatures range from 13.7°C (55.7°F) to 17.7°C (63.9°F) and the average growing degree-days range from 871 for °C (1567 for °F) to 1664 for °C (2994 °F). 58% of the vineyards are characterized within an intermediate climatic regime, 29% are within a cool climatic regime, 9% are within a warm climatic regime and 4% are on the boundaries between a cool, intermediate or warm regime. The growing degrees days calculated for the CGWR are similar to those measured in the Willamette Valley, Oregon, Burgundy, France, Umpqua Valley AVA, Oregon and Bordeaux, France.

All of the soils used to grow grapes are well drained and within a xeric moisture regime. 30 soil types are represented among the vineyard sites, with the Chemawa Series (Underwood Mountain) and Walla Walla Series (eastern portions) being dominant. Majority of the soils contain a silt loam texture, with 46.5% of the total vineyard acreage planted on soils formed in loess from eastern Washington and Oregon. The Missoula Floods influence the texture and age of the soil in this region, with skeletal textures close to the Columbia River and finer textures at higher elevations. Other common geological deposits at vineyards in the CGWR include, Quaternary Basalt (19.6%), Missoula Flood deposits (9.1%), The Dalles Formation (8.0%), Columbia River Basalt Group (7.5%), Pliocene Basalt (3.0%), Quaternary Surficial deposits (3.0%), lahars (2.3%) and Quaternary Basaltic Andesite and Andesite (0.9%).

Common geological deposits, soil series, and climate conditions at vineyard sites vary spatially in the region, making this one of the most diverse wine regions in terms of growing conditions in the Pacific Northwest.

Related articles…

Terroir zoning in appellation campo de borja (northeast Spain): Preliminary results

The components and methodology for characterization of the terroir have been described by Gómez-Miguel & Sotés (1993-2014, 2003) and Gómez-Miguel (2011) taking into account the full range of environmental factors (i.e: climate, lithology, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and specific variables to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.).

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).