Terroir 2016 banner
IVES 9 IVES Conference Series 9 Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Abstract

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA. As of September 2013, the region is home to 82 vineyards, 513 hectares (1268 acres), 36 wineries and 41 different varieties of Vitus Vinifera, with Pinot Noir being the most widely planted grape variety in both AVAs. To better understand the physical factors affecting Oregon and Washington wine, this project analyzes the climate, topography, geology and soil at vineyards in the CGWR using Geographic Information Systems and existing earth science databases.

Vineyards range in elevation from 29 to 548 meters (95 to 1799 feet). The microclimates vary within this relatively small wine region, allowing for diversity in grape varieties planted. Three Winkler climate regimes are represented within the CGWR, including Regions Ia, Ib, and II from the Winkler Index (Jones et al., 2010). The average growing season temperatures range from 13.7°C (55.7°F) to 17.7°C (63.9°F) and the average growing degree-days range from 871 for °C (1567 for °F) to 1664 for °C (2994 °F). 58% of the vineyards are characterized within an intermediate climatic regime, 29% are within a cool climatic regime, 9% are within a warm climatic regime and 4% are on the boundaries between a cool, intermediate or warm regime. The growing degrees days calculated for the CGWR are similar to those measured in the Willamette Valley, Oregon, Burgundy, France, Umpqua Valley AVA, Oregon and Bordeaux, France.

All of the soils used to grow grapes are well drained and within a xeric moisture regime. 30 soil types are represented among the vineyard sites, with the Chemawa Series (Underwood Mountain) and Walla Walla Series (eastern portions) being dominant. Majority of the soils contain a silt loam texture, with 46.5% of the total vineyard acreage planted on soils formed in loess from eastern Washington and Oregon. The Missoula Floods influence the texture and age of the soil in this region, with skeletal textures close to the Columbia River and finer textures at higher elevations. Other common geological deposits at vineyards in the CGWR include, Quaternary Basalt (19.6%), Missoula Flood deposits (9.1%), The Dalles Formation (8.0%), Columbia River Basalt Group (7.5%), Pliocene Basalt (3.0%), Quaternary Surficial deposits (3.0%), lahars (2.3%) and Quaternary Basaltic Andesite and Andesite (0.9%).

Common geological deposits, soil series, and climate conditions at vineyard sites vary spatially in the region, making this one of the most diverse wine regions in terms of growing conditions in the Pacific Northwest.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Hilary Whitney and Scott Burns

Department of Geology, Portland State University

Contact the author

Keywords

Columbia Gorge, terroir, geographic information systems (GIS)

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Unlike most of other foods, wine sensory quality is thought to reach a peak after an aging period. In the case of the Valpolicella red wines

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).