Terroir 2016 banner
IVES 9 IVES Conference Series 9 Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

Abstract

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA. As of September 2013, the region is home to 82 vineyards, 513 hectares (1268 acres), 36 wineries and 41 different varieties of Vitus Vinifera, with Pinot Noir being the most widely planted grape variety in both AVAs. To better understand the physical factors affecting Oregon and Washington wine, this project analyzes the climate, topography, geology and soil at vineyards in the CGWR using Geographic Information Systems and existing earth science databases.

Vineyards range in elevation from 29 to 548 meters (95 to 1799 feet). The microclimates vary within this relatively small wine region, allowing for diversity in grape varieties planted. Three Winkler climate regimes are represented within the CGWR, including Regions Ia, Ib, and II from the Winkler Index (Jones et al., 2010). The average growing season temperatures range from 13.7°C (55.7°F) to 17.7°C (63.9°F) and the average growing degree-days range from 871 for °C (1567 for °F) to 1664 for °C (2994 °F). 58% of the vineyards are characterized within an intermediate climatic regime, 29% are within a cool climatic regime, 9% are within a warm climatic regime and 4% are on the boundaries between a cool, intermediate or warm regime. The growing degrees days calculated for the CGWR are similar to those measured in the Willamette Valley, Oregon, Burgundy, France, Umpqua Valley AVA, Oregon and Bordeaux, France.

All of the soils used to grow grapes are well drained and within a xeric moisture regime. 30 soil types are represented among the vineyard sites, with the Chemawa Series (Underwood Mountain) and Walla Walla Series (eastern portions) being dominant. Majority of the soils contain a silt loam texture, with 46.5% of the total vineyard acreage planted on soils formed in loess from eastern Washington and Oregon. The Missoula Floods influence the texture and age of the soil in this region, with skeletal textures close to the Columbia River and finer textures at higher elevations. Other common geological deposits at vineyards in the CGWR include, Quaternary Basalt (19.6%), Missoula Flood deposits (9.1%), The Dalles Formation (8.0%), Columbia River Basalt Group (7.5%), Pliocene Basalt (3.0%), Quaternary Surficial deposits (3.0%), lahars (2.3%) and Quaternary Basaltic Andesite and Andesite (0.9%).

Common geological deposits, soil series, and climate conditions at vineyard sites vary spatially in the region, making this one of the most diverse wine regions in terms of growing conditions in the Pacific Northwest.

Related articles…

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Territorial delimitation of viticultural “Oltrepo Pavese (Lombardy)” using grape ripening precocity

L’Oltrepò Pavese est une zone de collines de la Lombardie, région située au nord de l’Italie avec un vignoble qui s’étend sur près de 15 000 ha. Cette zone représente la plus grande aire de production de la région et une des A.O.C. les plus étendues de tout le pays. Les cépages les plus cultivés, même historiquement, sont autochtones : la Barbera et la Croatina utilisés pour la production de vin rouge «Oltrepò» et le Pinot noir pour la production de vins mousseux. Pour le zonage viticole de cette A.O.C., il a été pris en considération: le climat, les sols, les caractéristiques viti-vinicoles.