OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Abstract

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized. 

However, haze formation is not only a question of protein composition and concentration. It depends on many other factors, such as pH, wine composition (polyphenols, polysaccharides,…). Heat or chemical tests used to adjust the bentonite dose often leads to an overestimation, because they aim at removing all the proteins, even the ones that are stable in the range 60-80 °C and are not involved in spontaneous haze. 

In this study, we analyzed and quantified the proteins in 7 white wines (3 varieties, 4 areas), treated with four bentonite doses ranging from 5 to 80 g/hL. In parallel, samples of wines were heated during 30 minutes at 40, 60 and 80 °C and the residual proteins analyzed. 

The wines differed in their protein composition. In each wine, when they were present, the proteins were adsorbed on bentonite in this order: chitinase and β-glucanase, Lipid Transfer Protein (LTP), Thaumatin Like (TL) 22 kDa, TL 19 kDa and Invertase. 

The adsorption of a given protein was wine dependent. This could be due to wine pH and ionic strength (different in the studied wines), which changes electrostatic interactions that drive the protein adsorption onto bentonite, but also to other differences in composition (ethanol, polysaccharides, polyphenols, metals…). Experiments performed at pH 2.5 indicated that pH is not the only cause of such different adsorption behaviours: indeed adsorption isotherms were different. 

Protein adsorption on bentonite was compared to their thermal sensitivity. It was ranked as previously: β-glucanase ~ Chitinase > TL22 > TL19 ~ Invertase > LTP. It is worth noting that the most thermostable proteins are the ones which need the highest doses of bentonite on a wide panel of wines. These stable proteins do not need to be removed and thus bentonite doses could be reduced. More specific tests, which would take into account only the most sensitive proteins need to be developed.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Céline Poncet-Legrand (1), Eric Meistermann (2), Frédéric Charrier (3), Philippe Cottereau (4), Patrick Chemardin (1), Aude Vernhet (1)

1 UMR SPO- Univ Montpellier – INRA- Montpellier SupAgro – 2, place Pierre Viala, 34060 Montpellier cedex FRANCE 
2 Institut Français de la Vigne et du Vin, F-68000 Colmar 
3 Institut Français de la Vigne et du Vin, F-44120 Vertou 
4 Institut Français de la Vigne et du Vin, F-30230 Rodilhan 

Contact the author

Keywords

haze formation, fining, protein adsorption, wine matrix

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The future of wine grape growing regions in europe

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.

Development of breeding of PIWI varieties in the Czech Republic

Context and purpose of the study. The Czech Republic is one of the most important grape growers of PIWI varieties in the Europe, as the total area planted with PIWI varieties is almost 1000 ha.