OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Abstract

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized. 

However, haze formation is not only a question of protein composition and concentration. It depends on many other factors, such as pH, wine composition (polyphenols, polysaccharides,…). Heat or chemical tests used to adjust the bentonite dose often leads to an overestimation, because they aim at removing all the proteins, even the ones that are stable in the range 60-80 °C and are not involved in spontaneous haze. 

In this study, we analyzed and quantified the proteins in 7 white wines (3 varieties, 4 areas), treated with four bentonite doses ranging from 5 to 80 g/hL. In parallel, samples of wines were heated during 30 minutes at 40, 60 and 80 °C and the residual proteins analyzed. 

The wines differed in their protein composition. In each wine, when they were present, the proteins were adsorbed on bentonite in this order: chitinase and β-glucanase, Lipid Transfer Protein (LTP), Thaumatin Like (TL) 22 kDa, TL 19 kDa and Invertase. 

The adsorption of a given protein was wine dependent. This could be due to wine pH and ionic strength (different in the studied wines), which changes electrostatic interactions that drive the protein adsorption onto bentonite, but also to other differences in composition (ethanol, polysaccharides, polyphenols, metals…). Experiments performed at pH 2.5 indicated that pH is not the only cause of such different adsorption behaviours: indeed adsorption isotherms were different. 

Protein adsorption on bentonite was compared to their thermal sensitivity. It was ranked as previously: β-glucanase ~ Chitinase > TL22 > TL19 ~ Invertase > LTP. It is worth noting that the most thermostable proteins are the ones which need the highest doses of bentonite on a wide panel of wines. These stable proteins do not need to be removed and thus bentonite doses could be reduced. More specific tests, which would take into account only the most sensitive proteins need to be developed.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Céline Poncet-Legrand (1), Eric Meistermann (2), Frédéric Charrier (3), Philippe Cottereau (4), Patrick Chemardin (1), Aude Vernhet (1)

1 UMR SPO- Univ Montpellier – INRA- Montpellier SupAgro – 2, place Pierre Viala, 34060 Montpellier cedex FRANCE 
2 Institut Français de la Vigne et du Vin, F-68000 Colmar 
3 Institut Français de la Vigne et du Vin, F-44120 Vertou 
4 Institut Français de la Vigne et du Vin, F-30230 Rodilhan 

Contact the author

Keywords

haze formation, fining, protein adsorption, wine matrix

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region.

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.