OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Abstract

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized. 

However, haze formation is not only a question of protein composition and concentration. It depends on many other factors, such as pH, wine composition (polyphenols, polysaccharides,…). Heat or chemical tests used to adjust the bentonite dose often leads to an overestimation, because they aim at removing all the proteins, even the ones that are stable in the range 60-80 °C and are not involved in spontaneous haze. 

In this study, we analyzed and quantified the proteins in 7 white wines (3 varieties, 4 areas), treated with four bentonite doses ranging from 5 to 80 g/hL. In parallel, samples of wines were heated during 30 minutes at 40, 60 and 80 °C and the residual proteins analyzed. 

The wines differed in their protein composition. In each wine, when they were present, the proteins were adsorbed on bentonite in this order: chitinase and β-glucanase, Lipid Transfer Protein (LTP), Thaumatin Like (TL) 22 kDa, TL 19 kDa and Invertase. 

The adsorption of a given protein was wine dependent. This could be due to wine pH and ionic strength (different in the studied wines), which changes electrostatic interactions that drive the protein adsorption onto bentonite, but also to other differences in composition (ethanol, polysaccharides, polyphenols, metals…). Experiments performed at pH 2.5 indicated that pH is not the only cause of such different adsorption behaviours: indeed adsorption isotherms were different. 

Protein adsorption on bentonite was compared to their thermal sensitivity. It was ranked as previously: β-glucanase ~ Chitinase > TL22 > TL19 ~ Invertase > LTP. It is worth noting that the most thermostable proteins are the ones which need the highest doses of bentonite on a wide panel of wines. These stable proteins do not need to be removed and thus bentonite doses could be reduced. More specific tests, which would take into account only the most sensitive proteins need to be developed.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Céline Poncet-Legrand (1), Eric Meistermann (2), Frédéric Charrier (3), Philippe Cottereau (4), Patrick Chemardin (1), Aude Vernhet (1)

1 UMR SPO- Univ Montpellier – INRA- Montpellier SupAgro – 2, place Pierre Viala, 34060 Montpellier cedex FRANCE 
2 Institut Français de la Vigne et du Vin, F-68000 Colmar 
3 Institut Français de la Vigne et du Vin, F-44120 Vertou 
4 Institut Français de la Vigne et du Vin, F-30230 Rodilhan 

Contact the author

Keywords

haze formation, fining, protein adsorption, wine matrix

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Are biochemical markers the key to predicting wine aroma balance?

Wine aroma quality is a complex interplay of factors like terroir, vinification techniques, that modulate aroma compound composition.

Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Aims: Wine typicity is defined as a reflection of varietal origins, cultures and traditions of the wine. These aspects are many times also extremely important when considering a wines quality. However, as climate change occurs the typicity of wines may also change. With the long history of winemaking it is possible to define a wines typicity and how it has changed as climate alters. 

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.