OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Abstract

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized. 

However, haze formation is not only a question of protein composition and concentration. It depends on many other factors, such as pH, wine composition (polyphenols, polysaccharides,…). Heat or chemical tests used to adjust the bentonite dose often leads to an overestimation, because they aim at removing all the proteins, even the ones that are stable in the range 60-80 °C and are not involved in spontaneous haze. 

In this study, we analyzed and quantified the proteins in 7 white wines (3 varieties, 4 areas), treated with four bentonite doses ranging from 5 to 80 g/hL. In parallel, samples of wines were heated during 30 minutes at 40, 60 and 80 °C and the residual proteins analyzed. 

The wines differed in their protein composition. In each wine, when they were present, the proteins were adsorbed on bentonite in this order: chitinase and β-glucanase, Lipid Transfer Protein (LTP), Thaumatin Like (TL) 22 kDa, TL 19 kDa and Invertase. 

The adsorption of a given protein was wine dependent. This could be due to wine pH and ionic strength (different in the studied wines), which changes electrostatic interactions that drive the protein adsorption onto bentonite, but also to other differences in composition (ethanol, polysaccharides, polyphenols, metals…). Experiments performed at pH 2.5 indicated that pH is not the only cause of such different adsorption behaviours: indeed adsorption isotherms were different. 

Protein adsorption on bentonite was compared to their thermal sensitivity. It was ranked as previously: β-glucanase ~ Chitinase > TL22 > TL19 ~ Invertase > LTP. It is worth noting that the most thermostable proteins are the ones which need the highest doses of bentonite on a wide panel of wines. These stable proteins do not need to be removed and thus bentonite doses could be reduced. More specific tests, which would take into account only the most sensitive proteins need to be developed.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Céline Poncet-Legrand (1), Eric Meistermann (2), Frédéric Charrier (3), Philippe Cottereau (4), Patrick Chemardin (1), Aude Vernhet (1)

1 UMR SPO- Univ Montpellier – INRA- Montpellier SupAgro – 2, place Pierre Viala, 34060 Montpellier cedex FRANCE 
2 Institut Français de la Vigne et du Vin, F-68000 Colmar 
3 Institut Français de la Vigne et du Vin, F-44120 Vertou 
4 Institut Français de la Vigne et du Vin, F-30230 Rodilhan 

Contact the author

Keywords

haze formation, fining, protein adsorption, wine matrix

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

Disease resistant hybrid grape cultivars are now allowed in a number of EU wine PDOs, and are also accepted in a number of countries outside the EU. There is increasing interest in diseases resistant hybrid grape cultivars (RHGCs) because they allow for the production of healthy, high quality grapes with limited use of pesticides and the associated environmental and public health

Terracing in steep slope viticulture and its potential to promote biodiversity in vineyard ecosystems

Viticulture on steep slopes has shaped exceptionally species-rich cultural landscapes in Germany.

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.