OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Abstract

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects. 

A strategy consisting on coupling FTIR-ATR spectroscopy and multivariate analysis is here proposed as a fermentation process control strategy. The idea was to develop a portable, rapid, easy-to-use and economic device/tool to monitor fermentation processes and to detect deviations from the normal fermentation conditions (NFC). A portable FTIR-ATR spectrometer was used to monitor small-scale alcoholic fermentations (microvinifications), some of them conducted in NFC and some others intentionally deviated from it. FTIR-ATR measurements were collected during the fermentation process and relative density and content of sugars (glucose and fructose), acetic acid, malic acid and lactic acid were analyzed by traditional methods. 

Multivariate analysis (exploratory methods and linear regression methods) was applied in order to model the whole fermentation process and detect deviations. The prediction of the sugar content in fermenting samples was achieved, demonstrating the possibility to use this portable device to rapidly monitor fermentations and to detect at an early stage slower fermentations, giving the possibility to the winemaker to eventually correct the process and to obtain a good quality product. Moreover, control charts based on multivariate Hotelling T2 and Q statistics were built to detect abnormal deviations. In conclusion, this methodology shows great potential as a fast and simple at-line analysis tool for early detection of fermentation problems. 

Acknowledgment:

The financial support by the Spanish Ministry of Science and Technology (Project AGL2015-70106-R) is acknowledged.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Julieta Cavaglia, Barbara Giussani, Olga Busto, Laura Aceña, Joan Ferré, Montserrat Mestres, Ricard Boqué

Dipartimento di Scienza e Alta Tecnologia. Universitàdegli Studi dell’Insubria. Via Valleggio, 9. 22100 Como Italy 
Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili 43007 Tarragona Spain 

Contact the author

Keywords

rocess Control, Alcoholic Fermentation, FTIR, Portable device 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

It is not easy at first sight to give an exhaustive definition of the notion of terroir as it can be simplified or complicated at will. Thus the vagueness that surrounds this concept leaves the door open to various interpretations of the terroir. These tend towards a questionable level of objectivity because the fields they explore are not sufficient to explain the notion on their own, constituting only part of a whole.

Impact of closures on aroma of godello and torrontés white wines post-bottling

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content.