OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Abstract

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects. 

A strategy consisting on coupling FTIR-ATR spectroscopy and multivariate analysis is here proposed as a fermentation process control strategy. The idea was to develop a portable, rapid, easy-to-use and economic device/tool to monitor fermentation processes and to detect deviations from the normal fermentation conditions (NFC). A portable FTIR-ATR spectrometer was used to monitor small-scale alcoholic fermentations (microvinifications), some of them conducted in NFC and some others intentionally deviated from it. FTIR-ATR measurements were collected during the fermentation process and relative density and content of sugars (glucose and fructose), acetic acid, malic acid and lactic acid were analyzed by traditional methods. 

Multivariate analysis (exploratory methods and linear regression methods) was applied in order to model the whole fermentation process and detect deviations. The prediction of the sugar content in fermenting samples was achieved, demonstrating the possibility to use this portable device to rapidly monitor fermentations and to detect at an early stage slower fermentations, giving the possibility to the winemaker to eventually correct the process and to obtain a good quality product. Moreover, control charts based on multivariate Hotelling T2 and Q statistics were built to detect abnormal deviations. In conclusion, this methodology shows great potential as a fast and simple at-line analysis tool for early detection of fermentation problems. 

Acknowledgment:

The financial support by the Spanish Ministry of Science and Technology (Project AGL2015-70106-R) is acknowledged.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Julieta Cavaglia, Barbara Giussani, Olga Busto, Laura Aceña, Joan Ferré, Montserrat Mestres, Ricard Boqué

Dipartimento di Scienza e Alta Tecnologia. Universitàdegli Studi dell’Insubria. Via Valleggio, 9. 22100 Como Italy 
Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili 43007 Tarragona Spain 

Contact the author

Keywords

rocess Control, Alcoholic Fermentation, FTIR, Portable device 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals. METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Development of a standardized method for metabolite analysis by NMR to assess wine authenticity

The wine sector generates a considerable amount of wealth but is facing a growing problem of fraud. Wine counterfeiting is one of the oldest and most common cases of food fraud worldwide. Therefore, the authenticity and traceability of wine are major concerns for both the industry and consumers. To address these issues, robust and reliable analysis and control methods are necessary. Several methods have been developed, ranging from simple organoleptic tests to more advanced methodologies such as isotopic techniques or residual radioactivity measurements.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Aim:  The aim of this paper is to demonstrate that the meaning of terroir should be regarded as transient. This is because climate, one of the principal components of terroir, is changing with time, and can no longer be assumed to be constant with fluctuations about a mean. This is due to the climate crisis.