OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Abstract

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects. 

A strategy consisting on coupling FTIR-ATR spectroscopy and multivariate analysis is here proposed as a fermentation process control strategy. The idea was to develop a portable, rapid, easy-to-use and economic device/tool to monitor fermentation processes and to detect deviations from the normal fermentation conditions (NFC). A portable FTIR-ATR spectrometer was used to monitor small-scale alcoholic fermentations (microvinifications), some of them conducted in NFC and some others intentionally deviated from it. FTIR-ATR measurements were collected during the fermentation process and relative density and content of sugars (glucose and fructose), acetic acid, malic acid and lactic acid were analyzed by traditional methods. 

Multivariate analysis (exploratory methods and linear regression methods) was applied in order to model the whole fermentation process and detect deviations. The prediction of the sugar content in fermenting samples was achieved, demonstrating the possibility to use this portable device to rapidly monitor fermentations and to detect at an early stage slower fermentations, giving the possibility to the winemaker to eventually correct the process and to obtain a good quality product. Moreover, control charts based on multivariate Hotelling T2 and Q statistics were built to detect abnormal deviations. In conclusion, this methodology shows great potential as a fast and simple at-line analysis tool for early detection of fermentation problems. 

Acknowledgment:

The financial support by the Spanish Ministry of Science and Technology (Project AGL2015-70106-R) is acknowledged.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Julieta Cavaglia, Barbara Giussani, Olga Busto, Laura Aceña, Joan Ferré, Montserrat Mestres, Ricard Boqué

Dipartimento di Scienza e Alta Tecnologia. Universitàdegli Studi dell’Insubria. Via Valleggio, 9. 22100 Como Italy 
Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili 43007 Tarragona Spain 

Contact the author

Keywords

rocess Control, Alcoholic Fermentation, FTIR, Portable device 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Identifying wild Vitis riparia Michx clones as a source of rootstock to mitigate vigour and acclimation/deacclimation cycles of the scion

Grapevine rootstocks have traditionally been chosen in order to manage scion vigour, soil pests and soil conditions. Riparia Gloire de Montpellier (RGM) has been in use since the turn of the 19th century, over 100 years and still a remarkably stable source of phylloxera (Daktulosphaeria vitifoliae Fitch) resistance. The original source material was probably collected near the Missouri/Mississippi river confluence, a mid-continental but more southerly location in the United States. It has been hypothesized that more northerly selections of V. riparia Michx might improve both fall acclimation rate and depth of the scion, thus mitigating late fall frost and midwinter freeze damage.

Cépage “Baga” région Bairrada. 2- De la conduite traditionnelle jusqu’au système ‘Lys’

Dans la Région de la Bairrada (Litoral-Centre du Portugal), on a étudié au 1999, l’influence des différents systèmes de conduite sur le cépage rouge “Baga”, le plus important de la Région.

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.