OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Abstract

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects. 

A strategy consisting on coupling FTIR-ATR spectroscopy and multivariate analysis is here proposed as a fermentation process control strategy. The idea was to develop a portable, rapid, easy-to-use and economic device/tool to monitor fermentation processes and to detect deviations from the normal fermentation conditions (NFC). A portable FTIR-ATR spectrometer was used to monitor small-scale alcoholic fermentations (microvinifications), some of them conducted in NFC and some others intentionally deviated from it. FTIR-ATR measurements were collected during the fermentation process and relative density and content of sugars (glucose and fructose), acetic acid, malic acid and lactic acid were analyzed by traditional methods. 

Multivariate analysis (exploratory methods and linear regression methods) was applied in order to model the whole fermentation process and detect deviations. The prediction of the sugar content in fermenting samples was achieved, demonstrating the possibility to use this portable device to rapidly monitor fermentations and to detect at an early stage slower fermentations, giving the possibility to the winemaker to eventually correct the process and to obtain a good quality product. Moreover, control charts based on multivariate Hotelling T2 and Q statistics were built to detect abnormal deviations. In conclusion, this methodology shows great potential as a fast and simple at-line analysis tool for early detection of fermentation problems. 

Acknowledgment:

The financial support by the Spanish Ministry of Science and Technology (Project AGL2015-70106-R) is acknowledged.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Julieta Cavaglia, Barbara Giussani, Olga Busto, Laura Aceña, Joan Ferré, Montserrat Mestres, Ricard Boqué

Dipartimento di Scienza e Alta Tecnologia. Universitàdegli Studi dell’Insubria. Via Valleggio, 9. 22100 Como Italy 
Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili 43007 Tarragona Spain 

Contact the author

Keywords

rocess Control, Alcoholic Fermentation, FTIR, Portable device 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Phenolic compounds present in natural haze protein of Sauvignon white wine

The aim of this work was the identification and quantification of polyphenols present in natural precipitate of a Sauvignon wine. Phenol analysis in wine precipitate was based on acid hydrolysis, CG- MS after derivatization, and LC-MS.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.