terclim by ICS banner
IVES 9 IVES Conference Series 9 The grapevine QTLome is ripe: QTL survey, databasing, and first applications

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Abstract

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait. This has led to the collection of more than 150 published QTL papers and to the FAIRification of the fields relevant to the grapevine QTL database. A grapevine-QTL frontend application for uploading data has been developed to support QTL curators.
For each specific trait, the QTLome will be anchored firstly to the grapevine reference PN40024.T2T(v5) genome/annotation and secondly to the published diverse genome assemblies. The generated “Grapevine QTL browser” will (i) enhance the understanding of the genetic architecture of diverse phenotypes, (ii) reveal consistent QTLs across studies (consensus genomic intervals), which are particularly valuable for marker-assisted breeding, (iii) assist the identification of candidate genes (relevant alleles) and their integration into biological/biotechnological applications. The potential of this resource will be demonstrated by a case study.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Silvia Vezzulli1*§, Marco Moretto, Paola Bettinelli1, Javier Tello2, Pablo Carbonell-Bejerano2, Agnès Doligez3, Elsa Chedid4, Marina de Miguel4, Elisa Marguerit4, Éric Duchêne5, Ludger Hausmann6, Franco Röckel6, Daniela Holtgräwe7, Noam Reshef8, Varoostha Govender9, Justin Lashbrooke9, Claudia Muñoz-Espinoza10, Marco Meneses11, Patricio Hinrichsen11, Summaira Riaz12, Chin Feng Hwang13, Lance Cadle-Davidson14, Diana Bellin15, Alessandra Amato15, Marianna Fasoli15, José Tomás Matus16, Lakshay Anand17, Camille Rustenholz5, Laura Costantini1

1 Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Trento, Italy
2 Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de la Rioja, Gobierno de La Rioja, Logroño, Spain
3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4 EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
5 SVQV, INRAE-University of Strasbourg, Colmar, France
6 Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
7 Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
8 Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
9 Department of Genetics, Stellenbosch University, Matieland, South Africa
10 Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
11 Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
12 Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
13 State Fruit Experiment Station at Mountain Grove Campus, Missouri State University, Springfield, Missouri, USA
14 USDA-ARS Grape Genetics Research Unit, Geneva, New York, USA
15 Department of Biotechnology, University of Verona, Verona, Italy
16 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
17 Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, Kentucky, USA

§ equally contributed

Contact the author*

Keywords

QTL browser, database, manual curation, Vitis ontology, FAIR

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Characterization of intact glycoside aroma precursors of recovered minority Spanish red grape varieties by High-Resolution Mass Spectrometry

In Spain, the wide diversity of red grapevine varieties represents an advantage when choosing the most suitable one for cultivation based on different climatic conditions, without implying a loss of their enological potential.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).