terclim by ICS banner
IVES 9 IVES Conference Series 9 The grapevine QTLome is ripe: QTL survey, databasing, and first applications

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Abstract

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait. This has led to the collection of more than 150 published QTL papers and to the FAIRification of the fields relevant to the grapevine QTL database. A grapevine-QTL frontend application for uploading data has been developed to support QTL curators.
For each specific trait, the QTLome will be anchored firstly to the grapevine reference PN40024.T2T(v5) genome/annotation and secondly to the published diverse genome assemblies. The generated “Grapevine QTL browser” will (i) enhance the understanding of the genetic architecture of diverse phenotypes, (ii) reveal consistent QTLs across studies (consensus genomic intervals), which are particularly valuable for marker-assisted breeding, (iii) assist the identification of candidate genes (relevant alleles) and their integration into biological/biotechnological applications. The potential of this resource will be demonstrated by a case study.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Silvia Vezzulli1*§, Marco Moretto, Paola Bettinelli1, Javier Tello2, Pablo Carbonell-Bejerano2, Agnès Doligez3, Elsa Chedid4, Marina de Miguel4, Elisa Marguerit4, Éric Duchêne5, Ludger Hausmann6, Franco Röckel6, Daniela Holtgräwe7, Noam Reshef8, Varoostha Govender9, Justin Lashbrooke9, Claudia Muñoz-Espinoza10, Marco Meneses11, Patricio Hinrichsen11, Summaira Riaz12, Chin Feng Hwang13, Lance Cadle-Davidson14, Diana Bellin15, Alessandra Amato15, Marianna Fasoli15, José Tomás Matus16, Lakshay Anand17, Camille Rustenholz5, Laura Costantini1

1 Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Trento, Italy
2 Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de la Rioja, Gobierno de La Rioja, Logroño, Spain
3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4 EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
5 SVQV, INRAE-University of Strasbourg, Colmar, France
6 Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
7 Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
8 Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
9 Department of Genetics, Stellenbosch University, Matieland, South Africa
10 Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
11 Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
12 Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
13 State Fruit Experiment Station at Mountain Grove Campus, Missouri State University, Springfield, Missouri, USA
14 USDA-ARS Grape Genetics Research Unit, Geneva, New York, USA
15 Department of Biotechnology, University of Verona, Verona, Italy
16 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
17 Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, Kentucky, USA

§ equally contributed

Contact the author*

Keywords

QTL browser, database, manual curation, Vitis ontology, FAIR

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds.

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.