terclim by ICS banner
IVES 9 IVES Conference Series 9 The grapevine QTLome is ripe: QTL survey, databasing, and first applications

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Abstract

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait. This has led to the collection of more than 150 published QTL papers and to the FAIRification of the fields relevant to the grapevine QTL database. A grapevine-QTL frontend application for uploading data has been developed to support QTL curators.
For each specific trait, the QTLome will be anchored firstly to the grapevine reference PN40024.T2T(v5) genome/annotation and secondly to the published diverse genome assemblies. The generated “Grapevine QTL browser” will (i) enhance the understanding of the genetic architecture of diverse phenotypes, (ii) reveal consistent QTLs across studies (consensus genomic intervals), which are particularly valuable for marker-assisted breeding, (iii) assist the identification of candidate genes (relevant alleles) and their integration into biological/biotechnological applications. The potential of this resource will be demonstrated by a case study.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Silvia Vezzulli1*§, Marco Moretto, Paola Bettinelli1, Javier Tello2, Pablo Carbonell-Bejerano2, Agnès Doligez3, Elsa Chedid4, Marina de Miguel4, Elisa Marguerit4, Éric Duchêne5, Ludger Hausmann6, Franco Röckel6, Daniela Holtgräwe7, Noam Reshef8, Varoostha Govender9, Justin Lashbrooke9, Claudia Muñoz-Espinoza10, Marco Meneses11, Patricio Hinrichsen11, Summaira Riaz12, Chin Feng Hwang13, Lance Cadle-Davidson14, Diana Bellin15, Alessandra Amato15, Marianna Fasoli15, José Tomás Matus16, Lakshay Anand17, Camille Rustenholz5, Laura Costantini1

1 Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Trento, Italy
2 Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de la Rioja, Gobierno de La Rioja, Logroño, Spain
3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4 EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
5 SVQV, INRAE-University of Strasbourg, Colmar, France
6 Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
7 Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
8 Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
9 Department of Genetics, Stellenbosch University, Matieland, South Africa
10 Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
11 Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
12 Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
13 State Fruit Experiment Station at Mountain Grove Campus, Missouri State University, Springfield, Missouri, USA
14 USDA-ARS Grape Genetics Research Unit, Geneva, New York, USA
15 Department of Biotechnology, University of Verona, Verona, Italy
16 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
17 Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, Kentucky, USA

§ equally contributed

Contact the author*

Keywords

QTL browser, database, manual curation, Vitis ontology, FAIR

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades.