terclim by ICS banner
IVES 9 IVES Conference Series 9 The grapevine QTLome is ripe: QTL survey, databasing, and first applications

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Abstract

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait. This has led to the collection of more than 150 published QTL papers and to the FAIRification of the fields relevant to the grapevine QTL database. A grapevine-QTL frontend application for uploading data has been developed to support QTL curators.
For each specific trait, the QTLome will be anchored firstly to the grapevine reference PN40024.T2T(v5) genome/annotation and secondly to the published diverse genome assemblies. The generated “Grapevine QTL browser” will (i) enhance the understanding of the genetic architecture of diverse phenotypes, (ii) reveal consistent QTLs across studies (consensus genomic intervals), which are particularly valuable for marker-assisted breeding, (iii) assist the identification of candidate genes (relevant alleles) and their integration into biological/biotechnological applications. The potential of this resource will be demonstrated by a case study.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Silvia Vezzulli1*§, Marco Moretto, Paola Bettinelli1, Javier Tello2, Pablo Carbonell-Bejerano2, Agnès Doligez3, Elsa Chedid4, Marina de Miguel4, Elisa Marguerit4, Éric Duchêne5, Ludger Hausmann6, Franco Röckel6, Daniela Holtgräwe7, Noam Reshef8, Varoostha Govender9, Justin Lashbrooke9, Claudia Muñoz-Espinoza10, Marco Meneses11, Patricio Hinrichsen11, Summaira Riaz12, Chin Feng Hwang13, Lance Cadle-Davidson14, Diana Bellin15, Alessandra Amato15, Marianna Fasoli15, José Tomás Matus16, Lakshay Anand17, Camille Rustenholz5, Laura Costantini1

1 Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Trento, Italy
2 Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de la Rioja, Gobierno de La Rioja, Logroño, Spain
3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4 EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
5 SVQV, INRAE-University of Strasbourg, Colmar, France
6 Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
7 Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
8 Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
9 Department of Genetics, Stellenbosch University, Matieland, South Africa
10 Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
11 Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
12 Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
13 State Fruit Experiment Station at Mountain Grove Campus, Missouri State University, Springfield, Missouri, USA
14 USDA-ARS Grape Genetics Research Unit, Geneva, New York, USA
15 Department of Biotechnology, University of Verona, Verona, Italy
16 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
17 Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, Kentucky, USA

§ equally contributed

Contact the author*

Keywords

QTL browser, database, manual curation, Vitis ontology, FAIR

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Polyphenolic profile and dietary fiber content of skins and seeds from unfermented and fermented grape pomace

The valorization of winemaking byproducts is subordinated to the knowledge of their chemical characteristics. This work concerned the determination of the polyphenolic profile and the dietary fiber content of skins and seeds from unfermented and fermented pomace of different cultivars (Moscato bianco, Cortese, Arneis, Pinot Noir, Barbera, Grignolino, Nebbiolo), sampled from some wineries in the Piedmont area (Italy) during the 2020 harvest.

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.