OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Strategies for sample preparation and data handling in GC-MS wine applications

Strategies for sample preparation and data handling in GC-MS wine applications

Abstract

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. 

Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling. 

Therefore, strategies to reduce the some of the data can already be applied at the chemical analysis stage without loss of information. 

Using GCMS as analysis tool, an experiment was designed to evaluate on one hand different sample preparation methods, and on the other hand data handling strategies for the results. Twenty-six commercial wines from three cultivars (Chenin Blanc, Chardonnay, Sauvignon Blanc) and two winemaking styles (with and without wood contact) were subjected to three types of sample preparation (liquid/liquid extraction with three solvents, SPE on two stationary phases, HS-SPME on four fibres) before injection into GCMS. The various chemistries and polarities of the extraction solvents and stationary phases used resulted in different types of compounds being extracted from the wines. 

The TIC data was exported as a continuous signal (the chromatogram itself), as integrated peaks identified by their RTs, and as a (RT_m/z, abundance) matrix. Each type of data was submitted to PCA to underscore any natural grouping in the data. OPLS-DA and S-plots were subsequently used to determine the signals associated to cultivar discrimination and style. The raw data was revisited, and MS spectra extracted for the signals of interest, leading to the identification of the drivers (ions/compounds) for cultivars and style. 

The strategies for sample preparation and data extraction were evaluated based on their feasibility and potential for data mining. Additionally, this type of work can be of further use as a basis for developing screening or targeted analyses, based on the groups of analytes extracted during various sample preparation procedures.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Astrid Buica, Cody Williams, Mpho Mafata, Andrei Medvedovici, Costel Sarbu, Lucky Mokwen 

Institute for Grape and Wine Sciences, Stellenbosch University, South Africa 
Department of Viticulture and Oenology, Stellenbosch University, South Africa 
Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Romania 
Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, Cluj-Napoca, Romania 
Central Analytical Facility, Stellenbosch University, South Africa 

Contact the author

Keywords

data mining, GCMS, sample preparation, untargeted analysis

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

La haie bocagère comme critère de zonage à l’échelle parcellaire

In the French AOCs, the production area of ​​the raw material can be subject to plot delimitation based on criteria of physical environment and use. On the other hand, many environmental zonings are developing and the AOCs are called upon include provisions relating to these concerns. Hedges, through their effects on local changes in the regional climate and on functional biodiversity, can impact the functioning of vines and orchards. It is for this reason that their consideration as a delimitation criterion is envisaged.

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.