OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Abstract

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. 

Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact. 

Up to our works, various experimental methods have already been developed to determine gas-liquid partition coefficients, but were not adapted to red wines fruity aromatic expression context. Recently, we have developed a new method coupling the low-pressure and static headspace gas chromatography to a mass spectrometry (LP-HS-GC-MS) in order to calculate simultaneously main esters partition coefficients, and that, at their wine concentrations. 

This method of partition coefficients determination was used to study potential modifications of headspace aroma distribution and was applied to understand various perceptive interactions previously described by our team. Results revealed that pre-sensory effects may explain the effects observed during sensory analysis. For example, the presence of dimethyl sulfide led to an increase of esters partition coefficients, and therefore their concentration in the headspace what was correlated to the enhancement of the blackberry-fruit notes observed concomitantly. Furthermore, addition of malolactic fermentation by-products (as diacetyle, acetic acid, g-butyrolactone and acetoin) led to a decrease of esters partition coefficients, and thus of their concentration in the headspace, what may explain partly the masking effect of these compounds on fruity notes perception.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Margaux Cameleyre, Georgia Lytra, Sophie Tempère, Jean-Christophe Barbe

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

Analytical method development, Red wine, Sensory analysis, Perceptive interactions

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Study of yeast biocatalytic activity on grape aroma compounds

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.