OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Abstract

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. 

Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact. 

Up to our works, various experimental methods have already been developed to determine gas-liquid partition coefficients, but were not adapted to red wines fruity aromatic expression context. Recently, we have developed a new method coupling the low-pressure and static headspace gas chromatography to a mass spectrometry (LP-HS-GC-MS) in order to calculate simultaneously main esters partition coefficients, and that, at their wine concentrations. 

This method of partition coefficients determination was used to study potential modifications of headspace aroma distribution and was applied to understand various perceptive interactions previously described by our team. Results revealed that pre-sensory effects may explain the effects observed during sensory analysis. For example, the presence of dimethyl sulfide led to an increase of esters partition coefficients, and therefore their concentration in the headspace what was correlated to the enhancement of the blackberry-fruit notes observed concomitantly. Furthermore, addition of malolactic fermentation by-products (as diacetyle, acetic acid, g-butyrolactone and acetoin) led to a decrease of esters partition coefficients, and thus of their concentration in the headspace, what may explain partly the masking effect of these compounds on fruity notes perception.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Margaux Cameleyre, Georgia Lytra, Sophie Tempère, Jean-Christophe Barbe

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

Analytical method development, Red wine, Sensory analysis, Perceptive interactions

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value.

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.

Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

The French viticultural appellation areas are the result of an empirical, historical and evolutionary selection which, generally, has consecrated a match between natural factors, grape varieties and viti-vinicultural practices. The notion of terroir is the main basis of the Appellation d’Origine Contrôlée in viticulture. It is based on the one hand on privileged natural factors and on the other hand on the know-how of the winegrowers; the whole allowing the production of a wine endowed with an authenticity and a sensory typicity. Wine-growing practices evolve according to progress in viticulture and oenology, while the natural factors of the terroir are much more stable, with the exception of the vintage. They therefore represent a fundamental pillar of the identity of an appellation vineyard.

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).