OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Abstract

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. 

Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact. 

Up to our works, various experimental methods have already been developed to determine gas-liquid partition coefficients, but were not adapted to red wines fruity aromatic expression context. Recently, we have developed a new method coupling the low-pressure and static headspace gas chromatography to a mass spectrometry (LP-HS-GC-MS) in order to calculate simultaneously main esters partition coefficients, and that, at their wine concentrations. 

This method of partition coefficients determination was used to study potential modifications of headspace aroma distribution and was applied to understand various perceptive interactions previously described by our team. Results revealed that pre-sensory effects may explain the effects observed during sensory analysis. For example, the presence of dimethyl sulfide led to an increase of esters partition coefficients, and therefore their concentration in the headspace what was correlated to the enhancement of the blackberry-fruit notes observed concomitantly. Furthermore, addition of malolactic fermentation by-products (as diacetyle, acetic acid, g-butyrolactone and acetoin) led to a decrease of esters partition coefficients, and thus of their concentration in the headspace, what may explain partly the masking effect of these compounds on fruity notes perception.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Margaux Cameleyre, Georgia Lytra, Sophie Tempère, Jean-Christophe Barbe

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

Analytical method development, Red wine, Sensory analysis, Perceptive interactions

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Disease‐induced alterations in the reflectance spectrum of grape leaves

Context and purpose of the study ‐ Phytopathogenic diseases impact the development and yield of grapevines, resulting in economical, social and environmental losses.

Kimmeridgian age in Chablis: a geological argument for the social building of a terroir

Situated at the beginning of the 20th century on the territory of the Chablis municipality, delimited according to specialists of the time to plots of “kimmeridgian” origin, the vineyard producing Chablis

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.