OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

Abstract

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. 

Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact. 

Up to our works, various experimental methods have already been developed to determine gas-liquid partition coefficients, but were not adapted to red wines fruity aromatic expression context. Recently, we have developed a new method coupling the low-pressure and static headspace gas chromatography to a mass spectrometry (LP-HS-GC-MS) in order to calculate simultaneously main esters partition coefficients, and that, at their wine concentrations. 

This method of partition coefficients determination was used to study potential modifications of headspace aroma distribution and was applied to understand various perceptive interactions previously described by our team. Results revealed that pre-sensory effects may explain the effects observed during sensory analysis. For example, the presence of dimethyl sulfide led to an increase of esters partition coefficients, and therefore their concentration in the headspace what was correlated to the enhancement of the blackberry-fruit notes observed concomitantly. Furthermore, addition of malolactic fermentation by-products (as diacetyle, acetic acid, g-butyrolactone and acetoin) led to a decrease of esters partition coefficients, and thus of their concentration in the headspace, what may explain partly the masking effect of these compounds on fruity notes perception.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Margaux Cameleyre, Georgia Lytra, Sophie Tempère, Jean-Christophe Barbe

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

Analytical method development, Red wine, Sensory analysis, Perceptive interactions

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021). Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Precocity for fruit ripening is a genetically determined characteristic that is highly variable from one cultivar to another. In traditional wine-growing regions of Europe, growers have used this property to adapt the vines to local climatic conditions in order to maximize terroir expression

Vitamins in grape must: let’s lift a corner of the veil

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.