Terroir 2016 banner
IVES 9 IVES Conference Series 9 Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Abstract

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.) but not necessarily for plants where quality, not quantity is most relevant. For grapevine water stress occurring during specific phenological phases is an important factor when producing good quality wines. It induces in the red wine the production of anthocyanins and aroma precursors. On this base, in some terroirs the future climate constrictions could represent an opportunity to increase winegrowers’ incomes.

This study was carried out in Campania region (Southern Italy), an area well known for high quality wine production. Growth of the Aglianico grapevine cultivar, with a standard clone population on 1103 Paulsen rootstocks, was studied on two different types of soil: Calcisols and Cambisols. The agro-hydrological model SWAP was calibrated and applied to estimate soil-plant water status at the various crop phenological phases for three vintages (2011-2013). Then, the Crop water stress index (CWSI), as estimated by the model, was related to physiological measurements (e.g. leaf water potential), grape bunches measurements (e.g. sugar content) and wine quality (e.g. tannins). For both soils, the correlation between grape quality characteristics and CWSI were high (e.g. 0.895 with anthocyanins in the skins).

Finally, the model was applied to future climate conditions (2021-2051) obtained from statistical downscaling of Global Circulation Models (AOGCM) in order to estimate the effect of the climate on CWSI and hence on grape quality. Results show that in the study area the effects of climate change on grape and wine quality are not expected to be significant for Aglianico grapevine when grown on Calcisols and Cambisols.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

A. Bonfante (1), S.M. Alfieri (2), R. Albrizio (1), A. Basile (1), R. De Mascellis (1), A. Gambuti (3), P. Giorio1, G. Langella (1), P. Manna (1), E. Monaco (1), A. Erbaggio (4), L. Moio (3) and F. Terribile (3)

(1) National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), Ercolano (NA), Italy
(2) Delft University of Technology, Delft, The Netherlands, 3 University of Naples Federico II, Department of Agriculture, Portici (NA), Italy
(3) Agronomist freelancer

Contact the author

Keywords

climate change, grape quality, SWAP, Crop Water Stress Index (CWSI), Leaf Water Potential (LWP), Calcisols, Cambisols

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Climate change and reduction of inputs are two major challenges for viticulture and oenology. With increasing temperature, wines become less acid and microbiologically less stable (1).

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.