Terroir 2016 banner
IVES 9 IVES Conference Series 9 Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Abstract

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.) but not necessarily for plants where quality, not quantity is most relevant. For grapevine water stress occurring during specific phenological phases is an important factor when producing good quality wines. It induces in the red wine the production of anthocyanins and aroma precursors. On this base, in some terroirs the future climate constrictions could represent an opportunity to increase winegrowers’ incomes.

This study was carried out in Campania region (Southern Italy), an area well known for high quality wine production. Growth of the Aglianico grapevine cultivar, with a standard clone population on 1103 Paulsen rootstocks, was studied on two different types of soil: Calcisols and Cambisols. The agro-hydrological model SWAP was calibrated and applied to estimate soil-plant water status at the various crop phenological phases for three vintages (2011-2013). Then, the Crop water stress index (CWSI), as estimated by the model, was related to physiological measurements (e.g. leaf water potential), grape bunches measurements (e.g. sugar content) and wine quality (e.g. tannins). For both soils, the correlation between grape quality characteristics and CWSI were high (e.g. 0.895 with anthocyanins in the skins).

Finally, the model was applied to future climate conditions (2021-2051) obtained from statistical downscaling of Global Circulation Models (AOGCM) in order to estimate the effect of the climate on CWSI and hence on grape quality. Results show that in the study area the effects of climate change on grape and wine quality are not expected to be significant for Aglianico grapevine when grown on Calcisols and Cambisols.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

A. Bonfante (1), S.M. Alfieri (2), R. Albrizio (1), A. Basile (1), R. De Mascellis (1), A. Gambuti (3), P. Giorio1, G. Langella (1), P. Manna (1), E. Monaco (1), A. Erbaggio (4), L. Moio (3) and F. Terribile (3)

(1) National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), Ercolano (NA), Italy
(2) Delft University of Technology, Delft, The Netherlands, 3 University of Naples Federico II, Department of Agriculture, Portici (NA), Italy
(3) Agronomist freelancer

Contact the author

Keywords

climate change, grape quality, SWAP, Crop Water Stress Index (CWSI), Leaf Water Potential (LWP), Calcisols, Cambisols

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].