Terroir 2016 banner
IVES 9 IVES Conference Series 9 Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Abstract

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.) but not necessarily for plants where quality, not quantity is most relevant. For grapevine water stress occurring during specific phenological phases is an important factor when producing good quality wines. It induces in the red wine the production of anthocyanins and aroma precursors. On this base, in some terroirs the future climate constrictions could represent an opportunity to increase winegrowers’ incomes.

This study was carried out in Campania region (Southern Italy), an area well known for high quality wine production. Growth of the Aglianico grapevine cultivar, with a standard clone population on 1103 Paulsen rootstocks, was studied on two different types of soil: Calcisols and Cambisols. The agro-hydrological model SWAP was calibrated and applied to estimate soil-plant water status at the various crop phenological phases for three vintages (2011-2013). Then, the Crop water stress index (CWSI), as estimated by the model, was related to physiological measurements (e.g. leaf water potential), grape bunches measurements (e.g. sugar content) and wine quality (e.g. tannins). For both soils, the correlation between grape quality characteristics and CWSI were high (e.g. 0.895 with anthocyanins in the skins).

Finally, the model was applied to future climate conditions (2021-2051) obtained from statistical downscaling of Global Circulation Models (AOGCM) in order to estimate the effect of the climate on CWSI and hence on grape quality. Results show that in the study area the effects of climate change on grape and wine quality are not expected to be significant for Aglianico grapevine when grown on Calcisols and Cambisols.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

A. Bonfante (1), S.M. Alfieri (2), R. Albrizio (1), A. Basile (1), R. De Mascellis (1), A. Gambuti (3), P. Giorio1, G. Langella (1), P. Manna (1), E. Monaco (1), A. Erbaggio (4), L. Moio (3) and F. Terribile (3)

(1) National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), Ercolano (NA), Italy
(2) Delft University of Technology, Delft, The Netherlands, 3 University of Naples Federico II, Department of Agriculture, Portici (NA), Italy
(3) Agronomist freelancer

Contact the author

Keywords

climate change, grape quality, SWAP, Crop Water Stress Index (CWSI), Leaf Water Potential (LWP), Calcisols, Cambisols

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

The use of toasted vine-shoots as an alternative enological tool to make differentiated wines has generated interest among researchers and wineries. However, the evolution of these wines in bottle and the effect on the sensory profile has not been studied so far.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Postharvest elicitors and metabolic changes in wine grape berries

Wine grape berries respond to postharvest treatments with specific gaseous elicitors in terms of metabolic changes and composition. Short-term (3 days) high (30 KPa) CO2 treatment affects phenol compound concentration in skins of ‘Trebbiano toscano’ berries.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).