Terroir 2016 banner
IVES 9 IVES Conference Series 9 Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Abstract

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.) but not necessarily for plants where quality, not quantity is most relevant. For grapevine water stress occurring during specific phenological phases is an important factor when producing good quality wines. It induces in the red wine the production of anthocyanins and aroma precursors. On this base, in some terroirs the future climate constrictions could represent an opportunity to increase winegrowers’ incomes.

This study was carried out in Campania region (Southern Italy), an area well known for high quality wine production. Growth of the Aglianico grapevine cultivar, with a standard clone population on 1103 Paulsen rootstocks, was studied on two different types of soil: Calcisols and Cambisols. The agro-hydrological model SWAP was calibrated and applied to estimate soil-plant water status at the various crop phenological phases for three vintages (2011-2013). Then, the Crop water stress index (CWSI), as estimated by the model, was related to physiological measurements (e.g. leaf water potential), grape bunches measurements (e.g. sugar content) and wine quality (e.g. tannins). For both soils, the correlation between grape quality characteristics and CWSI were high (e.g. 0.895 with anthocyanins in the skins).

Finally, the model was applied to future climate conditions (2021-2051) obtained from statistical downscaling of Global Circulation Models (AOGCM) in order to estimate the effect of the climate on CWSI and hence on grape quality. Results show that in the study area the effects of climate change on grape and wine quality are not expected to be significant for Aglianico grapevine when grown on Calcisols and Cambisols.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

A. Bonfante (1), S.M. Alfieri (2), R. Albrizio (1), A. Basile (1), R. De Mascellis (1), A. Gambuti (3), P. Giorio1, G. Langella (1), P. Manna (1), E. Monaco (1), A. Erbaggio (4), L. Moio (3) and F. Terribile (3)

(1) National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forestry Systems (ISAFOM), Ercolano (NA), Italy
(2) Delft University of Technology, Delft, The Netherlands, 3 University of Naples Federico II, Department of Agriculture, Portici (NA), Italy
(3) Agronomist freelancer

Contact the author

Keywords

climate change, grape quality, SWAP, Crop Water Stress Index (CWSI), Leaf Water Potential (LWP), Calcisols, Cambisols

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.