terclim by ICS banner
IVES 9 IVES Conference Series 9 Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Abstract

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and highthroughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for Vitis vinifera.

DOI:

Publication date: July 6, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Guillaume Madignier1,2, Anis Djari1, Olivia Di Valentin1, Thibault Gillet1, Pierre Frasse1, Amel Djouhri1, Guojian Hu1,2, Sebastien Julliard3, Mingchun Liu4, Yang Zhang4, Farid Regad1, Julien Pirrello1, Elie Maza1,*, and Mondher Bouzayen1,*

1Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan 31326, France
2Fondation Jean Poupelain, Cognac, Javrezac 16100, France
3Conservatoire du vignoble charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
4Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China

Contact the author*

Keywords

Genome assembly, Genome annotation, HiFi, Hi-C, Iso-Seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Tolerance to sunburn: a variable to consider in the context of climate change

Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023).