Terroir 2016 banner
IVES 9 IVES Conference Series 9 Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

Abstract

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality. Given this backdrop, the acceptance or irrigation within the frameworks of the terroir definition takes a central place. Consistently, the objective of this work is to evaluate this compatibility. Since irrigation is basically a social practice, it is important to understand it from a sociological point of view.

To meet this commitment, a qualitative questionnaire was implemented: standard personal interviews with no frequency (subject surveyed once) with a multi-topic research (omnibus research). 18 participants to the 19th GiESCO Meeting were selected as participants to the questionnaire. In a second instance, a quantitative questionnaire was evaluated: depth or intensive questionnaire with close-ended questions. In parallel, 512 French wine consumers participate to an Internet survey. This way, subject was approached from a twofold perspective: qualified researchers and French wine regular consumers.

Results show that surveyed expert seems to agree (in 63% of cases) with the idea of not changing a terroir by adding water under a controlled management of the water status in the vine. Level of agreement seems to be related with expert’s provenance and therefore expert’s observations in their local weather. Finally, concerning consumer’s approach, the level of implication in wine seems to play a role in accepting irrigation; consumers not implicated on wine don’t have a formed opinion whereas implicated consumers showed both; for and against a reasoned irrigation as a tool to deal against climate change. Moreover, within qualified consumers, age could serve for explaining the acceptance of irrigation: young (≤35 years old) and medium consumers (from 36 to 64 years old) were more likely to accept irrigation and a different grape variety to preserve wine quality.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Santiago ALVAREZ GEI (1,2), Hernán OJEDA (1), Cécile COULON-LEROY (2)

(1) INRA, UE999 Pech Rouge, F-11430 Gruissan, France
(2) Unité GRAPPE, ESA, INRA, Comue UBL, 55 rue Rabelais BP 30748, F-49007 Angers, France

Keywords

Irrigation, Terroir, International experts, French consumers

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

The phenolic profile of the red grapevine varieties berries is a key quality factor and several techniques have been applied to improve it (Perez-Lamela et al., 2007; Singh SK and Sharma, 2010). The last decade the application of resistance elicitors and phytohormones is an innovative viticultural technique (Paladines-Quezada et al., 2021; Alenazi et al., 2019).In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Waste valorization in winery and distillery industry by producing biofertilizers and organic amendments

The winery and distilling spirits industry generate a remarkable amount of by-products and wasted, that are not properly managed, posing socioeconomic problems and environmental risks, due to its seasonal and polluting characteristics.

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).