Terroir 2016 banner
IVES 9 IVES Conference Series 9 Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

Abstract

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality. Given this backdrop, the acceptance or irrigation within the frameworks of the terroir definition takes a central place. Consistently, the objective of this work is to evaluate this compatibility. Since irrigation is basically a social practice, it is important to understand it from a sociological point of view.

To meet this commitment, a qualitative questionnaire was implemented: standard personal interviews with no frequency (subject surveyed once) with a multi-topic research (omnibus research). 18 participants to the 19th GiESCO Meeting were selected as participants to the questionnaire. In a second instance, a quantitative questionnaire was evaluated: depth or intensive questionnaire with close-ended questions. In parallel, 512 French wine consumers participate to an Internet survey. This way, subject was approached from a twofold perspective: qualified researchers and French wine regular consumers.

Results show that surveyed expert seems to agree (in 63% of cases) with the idea of not changing a terroir by adding water under a controlled management of the water status in the vine. Level of agreement seems to be related with expert’s provenance and therefore expert’s observations in their local weather. Finally, concerning consumer’s approach, the level of implication in wine seems to play a role in accepting irrigation; consumers not implicated on wine don’t have a formed opinion whereas implicated consumers showed both; for and against a reasoned irrigation as a tool to deal against climate change. Moreover, within qualified consumers, age could serve for explaining the acceptance of irrigation: young (≤35 years old) and medium consumers (from 36 to 64 years old) were more likely to accept irrigation and a different grape variety to preserve wine quality.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Santiago ALVAREZ GEI (1,2), Hernán OJEDA (1), Cécile COULON-LEROY (2)

(1) INRA, UE999 Pech Rouge, F-11430 Gruissan, France
(2) Unité GRAPPE, ESA, INRA, Comue UBL, 55 rue Rabelais BP 30748, F-49007 Angers, France

Keywords

Irrigation, Terroir, International experts, French consumers

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Terroir and precision viticulture: are they compatible?

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

The increasing frequency of heat waves during grape ripening presents challenges for the production of high-quality wine grapes. This underscores the significance of developing effective irrigation and canopy management techniques to optimize both yield and grape quality.
A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality. In a four-block experimental vineyard at Bodega Ribas in Mallorca, two irrigation treatments—moderate and severe deficit irrigation—were implemented. Within each irrigation plot, three light exposure treatments were randomly assigned, encompassing exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening.

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.