Terroir 2016 banner
IVES 9 IVES Conference Series 9 Vineyards and grape varieties: what is going on in wine professional and consumer minds?

Vineyards and grape varieties: what is going on in wine professional and consumer minds?

Abstract

Vineyard and grape variety are two popular ways of classifying wines. Vineyard designation is a traditional practice for European wine labels but is being increasingly replaced by grape variety designation, mainly used for New World and Swiss wine labels.

In a context of wine categorization, we investigated on the relationship between those two dimensions. For this purpose, we selected a set of 56 wine labels to represent three red grape varieties (Gamay, Pinot Noir and Gamaret) and three vineyards (Beaujolais, Burgundy and Switzerland). Three panels were recruited: a panel of 30 wine professionals (experts) from the Beaujolais vineyard, a panel of 30 wine consumers from the Beaujolais vineyard and a panel of 30 wine consumers from Lille, a French region without wine production. We used a free hierarchical sorting task on labels coupled with a verbalization task and an interview. Data were first analyzed separately for each panel using a Hierarchical Multiple Factor Analysis and a Hierarchical Ascending Classification.

Results showed that the three panels yielded very similar wine groups. With the exception of Gamaret wines, most French wines were separated by both vineyard and grape variety while Swiss wines were separated by grape varieties. Despite this similar categorization pattern, the interviews revealed different sorting criteria and strategies used to sort the labels for each panel. With the exception of a small part of experts, both experts and consumers from Beaujolais used their knowledge of grape varieties and vineyards to sort the wine labels while the consumers from Lille simply read the labels to find clues and deduce wine groups, because of a lack of knowledge.

Overall, the results indicate an interaction between vineyard and grape variety dimensions for the wine categorization by experts and consumers. The methodology proposed seems to be a promising tool that could be helpful to improve the promotion of wines.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Carole HONORÉ-CHEDOZEAU (1,2), Maud LELIÈVRE-DESMAS (3), Jordi BALLESTER (1), Sylvie CHOLLET (3), Bertrand CHATELET (2), Dominique VALENTIN (1)

(1) UMR CSGA 6265 CNRS, INRA, UBFC, 9E Boulevard Jeanne d’Arc, 21000 Dijon, France
(2) SICAREX Beaujolais, 210 Boulevard Victor Vermorel, CS 60320, 69661 Villefranche sur Saône Cedex, France
(3) ISA Lille, Institut Charles VIOLLETTE (ICV) EA 7394, 59000 Lille, France

Contact the author

Keywords

vineyards, grape varieties, mental representation, wine labels, experts, consumers

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Evaluation of the hydroxyethyl radical formation kinetic and Strecker aldehydes distribution for assessing the oxidative susceptibility of Chardonnay wines

Over the last decade, much attention has been paid on the oxidative susceptibility of white wines, given its key role in determining their ageing potential.

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.