terclim by ICS banner
IVES 9 IVES Conference Series 9 Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Abstract

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.

This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.

The SMC treatment increased vegetative plant growth compared to HERB and GPD and higher production values than TILL and HERB. These differences were attributed to higher water content during flowering to veraison period.Physiologically, there were no δ13C grape differences among soil management treatments due to irrigation applications during veraison and maturation, blurring potential effects on δ13C. Regarding leaf gas exchange, SMC showed higher Water Use Efficiency (WUEi: photosynthesis/stomatal conductance) at flowering and setting in both years. However, during veraison and maturation, stomatal conductances decreased due to elevated climatic stress. In 2021, STR and SMC exhibited higher stomatal conductances during veraison and maturation, resulting in a decline in WUEi. In contrast, in 2022, characterized by warmer and drier conditions, low conductances were observed, masking differences between soil treatments. Organic mulch treatments, especially SMC, improved plant capacities in semi-arid regions.

DOI:

Publication date: July 23, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Andreu Mairata1*, David Labarga1, Miguel Puelles1, Luis Rivacoba1, Javier Portu1, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain

Contact the author*

Keywords

water use efficiency, soil management, carbon isotope discrimination, mulching, yield

Tags

IVES Conference Series | OpenGPB | OpenGPB2024

Citation

Related articles…

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Fleurtai, Soreli and Tocai Friulano: perspectives for quality integration of wine together with protection of the DOCG Lison Classico appellation

In modern viticulture, sustainability must be considered not only into the winery, but in the vineyard as well, being that with the most attentive interventions in order to protect the environment. In this context, the new “fungi resistant” varieties represent a valid option for reducing the negative environmental impact of agrochemicals used in viticulture, including those ones used in organic farming (given the copper accumulation into soils). Several application studies have demonstrated the enological validity of many resistant varieties, both in price and as a blend. Also, under the production point of view, the feasibility and economical sustainability of the new resistant varieties was verified. The aim of this work was to deepen the knowledge on the organoleptic characteristics of wines obtained from the Fleurtai and Soreli varieties and to compare them with the wine obtained from Tocai Friulano, the mother variety in the area destined for the production of the Lison Classico DOCG appellation. The purpose of the work is then to verify the possibility of introducing resistant varieties into the DOCG while maintaining the wine name of the appellation linked to the territory.

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.