Armenia: historical origin of domesticated grapevine

Abstract

The Armenian Highlands are located on the northern border of Western Asia and stretch up to the Caucasus from the north. Throughout human history, the country has played an important role in connecting the civilizations of Europe and the Near East. A recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian Highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the Pleistocene, ending 11.5 thousand years ago. Until recently very little was known about the real magnitude of grape germplasm in Armenia. To address the gap in 2017, a nationwide program was launched to collect, conserve, and thoroughly characterize Armenian grapevine germplasm. Obtained results indicated that high genetic and morphological diversity as a source of novel alleles and genotypes is still safeguard in Armenia. A combination of genomic data, nuclear microsatellite markers and ampelography proved useful to determine the identity of collected samples recovered from old vineyards and home gardens, to analyze genetic relationships among two subspecies of Vitis vinifera, to demonstrated existence of gene flow between the wild and cultivated grapevines through overlaps and presence of admixed ancestry values.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Kristine Margaryan1,2, Avag Harutyunyan3, Bella Grigoryan1, Aramais Mkrtchyan1, Frunz Harutyunyan1

1 Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences RA, Yerevan 0014, Armenia
2 Research Institute of Biology, Yerevan State University, Yerevan 0025, Armenia
3 National Wine Center, Yerevan 0012, Armenia

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Unveiling the bioactive potential of aglianco grape pomace: oleanolic acid as a promising natural product

The winemaking industry generates a substantial amount of byproducts, including grape pomace, which is often discarded as waste. However, this seemingly useless material holds a wealth of bioactive compounds with potential health benefits. Recognizing the value of circular economy principles, this study delves into the comprehensive chemical analysis of aglianco grape pomace, aiming to transform this byproduct into a valuable resource.

On quality assurance of winemaking components

This report examines product quality assurance issues arising when technological aids and food additives are utilized in winemaking.

Correlation between stable isotopic composition of the fungus aspergillus niger and its growth substrate and the extracted chitin

Wine is one of the most consumed and appreciated beverages in the world. Due to the growing attention paid to consumer health, there is a continuous search for sustainable alternatives to common additives (such as sulfur dioxide) used to preserve wine. An example is represented by chitosan, the main derivative of chitin, approved for the treatment of must and wine since 2009 by the “international organization of vine and wine” (OIV/OENO 338a/2009) and by the european commission (EC Reg. No. 606/2009).

Technical efficiency and socio-environmental sustainability in the wine sector: tradeoff or complementarity? Evidence from Italy

In recent decades, sustainability has risen to prominence across various industries, including agriculture, spurred by initiatives such as the new common agricultural policy and the farm to fork strategy within the European Union. Among agricultural activities, viticulture stands as a crucial player in sustainability, intertwining environmental, social, and economic dimensions, as exemplified by the OIV general principles of sustainable viticulture. Italy, one of the main players in the global wine market, has long been making efforts towards the introduction of sustainability-oriented practices and certifications.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.