Armenia: historical origin of domesticated grapevine

Abstract

The Armenian Highlands are located on the northern border of Western Asia and stretch up to the Caucasus from the north. Throughout human history, the country has played an important role in connecting the civilizations of Europe and the Near East. A recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian Highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the Pleistocene, ending 11.5 thousand years ago. Until recently very little was known about the real magnitude of grape germplasm in Armenia. To address the gap in 2017, a nationwide program was launched to collect, conserve, and thoroughly characterize Armenian grapevine germplasm. Obtained results indicated that high genetic and morphological diversity as a source of novel alleles and genotypes is still safeguard in Armenia. A combination of genomic data, nuclear microsatellite markers and ampelography proved useful to determine the identity of collected samples recovered from old vineyards and home gardens, to analyze genetic relationships among two subspecies of Vitis vinifera, to demonstrated existence of gene flow between the wild and cultivated grapevines through overlaps and presence of admixed ancestry values.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Kristine Margaryan1,2, Avag Harutyunyan3, Bella Grigoryan1, Aramais Mkrtchyan1, Frunz Harutyunyan1

1 Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences RA, Yerevan 0014, Armenia
2 Research Institute of Biology, Yerevan State University, Yerevan 0025, Armenia
3 National Wine Center, Yerevan 0012, Armenia

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).