Armenia: historical origin of domesticated grapevine

Abstract

The Armenian Highlands are located on the northern border of Western Asia and stretch up to the Caucasus from the north. Throughout human history, the country has played an important role in connecting the civilizations of Europe and the Near East. A recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian Highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the Pleistocene, ending 11.5 thousand years ago. Until recently very little was known about the real magnitude of grape germplasm in Armenia. To address the gap in 2017, a nationwide program was launched to collect, conserve, and thoroughly characterize Armenian grapevine germplasm. Obtained results indicated that high genetic and morphological diversity as a source of novel alleles and genotypes is still safeguard in Armenia. A combination of genomic data, nuclear microsatellite markers and ampelography proved useful to determine the identity of collected samples recovered from old vineyards and home gardens, to analyze genetic relationships among two subspecies of Vitis vinifera, to demonstrated existence of gene flow between the wild and cultivated grapevines through overlaps and presence of admixed ancestry values.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Kristine Margaryan1,2, Avag Harutyunyan3, Bella Grigoryan1, Aramais Mkrtchyan1, Frunz Harutyunyan1

1 Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences RA, Yerevan 0014, Armenia
2 Research Institute of Biology, Yerevan State University, Yerevan 0025, Armenia
3 National Wine Center, Yerevan 0012, Armenia

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Use of cyclodextrins to improve grape must fermentability thanks to their sequestering effect on medium-chain fatty acids

Cyclodextrins are complex cyclic oligosaccharides of glucose units. They are produced from the breakdown of starch by the enzymatic reaction of glucosyltransferase. The result is a ring-shaped molecule with a cavity with a hydrophilic outer part and a hydrophobic inner part. As a consequence of this cavity, cyclodextrin is able to form complexes with non-polar organic molecules [1,2].

The Baco Blanc, the Armagnac hybrid variety adapted to the viticultural challenges of tomorrow

Today in the wine industry, a lot of alternatives are available for reducing phytosanitary inputs. Among these, prophylaxis, the use of biocontrol products and the deployment of pathogen-resistant vines are the most promising. eugenol (2-methoxy-4-(2-propenyl)-phenol), a molecule with recognised antifungal properties, can contribute to the last two alternatives. This molecule has been identified as an endogenous compound in the baco blanc hybrid variety used in armagnac pdo, which is at least tolerant to botrytis cinerea.

Applying value proposition design to collective strategic actions in family wineries: enhancing territorial resources in Vale dos Vinhedos, Brazil

The study aims to propose collective strategic actions for family wineries, promoting their competitiveness and the valorization of territorial resources.

The potential of new selection and indigenous grape varieties for sparkling wine production

In the context of climate change, it is essential to provide producers with alternatives based on local grape varieties capable of meeting modern quality and sustainability requirements.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.