Armenia: historical origin of domesticated grapevine

Abstract

The Armenian Highlands are located on the northern border of Western Asia and stretch up to the Caucasus from the north. Throughout human history, the country has played an important role in connecting the civilizations of Europe and the Near East. A recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian Highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the Pleistocene, ending 11.5 thousand years ago. Until recently very little was known about the real magnitude of grape germplasm in Armenia. To address the gap in 2017, a nationwide program was launched to collect, conserve, and thoroughly characterize Armenian grapevine germplasm. Obtained results indicated that high genetic and morphological diversity as a source of novel alleles and genotypes is still safeguard in Armenia. A combination of genomic data, nuclear microsatellite markers and ampelography proved useful to determine the identity of collected samples recovered from old vineyards and home gardens, to analyze genetic relationships among two subspecies of Vitis vinifera, to demonstrated existence of gene flow between the wild and cultivated grapevines through overlaps and presence of admixed ancestry values.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Kristine Margaryan1,2, Avag Harutyunyan3, Bella Grigoryan1, Aramais Mkrtchyan1, Frunz Harutyunyan1

1 Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences RA, Yerevan 0014, Armenia
2 Research Institute of Biology, Yerevan State University, Yerevan 0025, Armenia
3 National Wine Center, Yerevan 0012, Armenia

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

New markers for monitoring “fresh mushroom aroma” in wine: A dual approach using microbiological and chemical tools from the vineyard to winery–A synthesis of recent research advances

The ‘fresh mushroom off-flavour’ has been recognized by the wine industry as an emerging defect since the 2000s. For many years, this off-flavour was not specifically characterized and rather grouped under ‘earthy’ and ‘musty’ taints. However, it has become increasingly problematic due to its rising prevalence. In some vineyards, incidents of this off-flavour now occur as frequently as once every five years. This trend may be associated with climatic changes affecting regions that are more prone to warm and wet seasons.

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

Linear sweep voltammetry to classify and characterize the antioxidant properties of tannins

In recent years, numerous studies have been carried out at the OIV on oenological tannins, both with regard to oenological properties and methods of characterization. The results of these recent studies have led to the revision of the general monograph and the drafting of four new monographs, one for each of the four chemical classes into which the tannins have been grouped: ellagitannins, gallotannins, procyanidins/prodelphinidins, profisetinidins/prorobinetinins.

Direct-injection HPLC for simultaneous determination of individual and total polyphenols in red wines: validation of the method

Polyphenols are very important compounds of red wines, serving as essential bioactive components and playing an important role in sensory properties. The determination of individual phenolic compounds in red wine is commonly performed by HPLC analysis, while the total polyphenols are quantified by spectrophotometric methods, usually by the method of absorbance at 280 nm (index of ribéreau-gayon) or the method of index of folin-ciocalteu. In this work, we pioneeringly proposed a new and fast method for simultaneous determination of individual and total polyphenols in red wines by direct-injection HPLC without sample preparation.

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].