Armenia: historical origin of domesticated grapevine

Abstract

The Armenian Highlands are located on the northern border of Western Asia and stretch up to the Caucasus from the north. Throughout human history, the country has played an important role in connecting the civilizations of Europe and the Near East. A recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian Highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the Pleistocene, ending 11.5 thousand years ago. Until recently very little was known about the real magnitude of grape germplasm in Armenia. To address the gap in 2017, a nationwide program was launched to collect, conserve, and thoroughly characterize Armenian grapevine germplasm. Obtained results indicated that high genetic and morphological diversity as a source of novel alleles and genotypes is still safeguard in Armenia. A combination of genomic data, nuclear microsatellite markers and ampelography proved useful to determine the identity of collected samples recovered from old vineyards and home gardens, to analyze genetic relationships among two subspecies of Vitis vinifera, to demonstrated existence of gene flow between the wild and cultivated grapevines through overlaps and presence of admixed ancestry values.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Kristine Margaryan1,2, Avag Harutyunyan3, Bella Grigoryan1, Aramais Mkrtchyan1, Frunz Harutyunyan1

1 Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences RA, Yerevan 0014, Armenia
2 Research Institute of Biology, Yerevan State University, Yerevan 0025, Armenia
3 National Wine Center, Yerevan 0012, Armenia

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Multi-trait selection in ancient grapevine varieties

The selection of ancient grapevine varieties aims to achieve genetic gains in several important traits that can make the variety more interesting for the objectives of the producers. Traditionally, yield and quality traits of the must have been considered for selection, but many others can be taken into account. Linear mixed models are fitted to the data to predict the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each evaluated trait, which will be the basis for selection.

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Grapevine downy mildew development as affected by chitosan spray treatments and metabolomics implications

Chitosan has been shown to enhance grapevine tolerance toward downy mildew while reducing the environmental impact of traditional protection products.

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.