Terroir 2016 banner
IVES 9 IVES Conference Series 9 Talking about terroir

Talking about terroir

Abstract

When talking about terroir, scientists and lay wine tasters, very much including wine journalists and wine growers, too often talk past one another.

“Terroir” may be among the most irritatingly vague and slippery words in the wine growers’ and wine critic’s vocabulary, but scientists, too, seem conspicuously unwilling to render this notion more precise; and if a shared and mutually useful concept cannot be achieved, how can we reach genuine agreement or disagreement in our claims about terroir, let alone address or mitigate one another’s perplexity?

Moreover, it often appears as if parties to alleged explications of terroir fail even to agree on the phenomenon that demands explanation. Wine tasters are frustrated with scientists who make no attempt to account for but instead treat as implausible or debunk claims for organoleptic experience of wine as varying with regularity and predictability depending on site and soil type. Entire books have been written about vineyard geology under the rubric of terroir without accounting for how rocks might actually influence taste. Specialists often advise on where best to plant wine grapes seemingly oblivious that “best” can make sense only if location somehow ultimately influences taste. Yet scientists can be forgiven their frustration with and dismissals of utterly implausible pictures that wine tasters have painted for themselves about how soil and site might influence taste.

Examples will be offered of some common conceptual pitfalls into which both scientists and laity stumble when discussing “terroir.” Treating this term as by its nature evaluative undermines attempts to define site potential; treating it as encompassing anything that might impinge on the eventual character of wine including viticultural and cellar practices renders it so all-encompassing that it fails to mark any significant distinction. Positing something called “minerality in wine” trades on equivocation and conceptual muddle.

It will be proposed that “terroir” be defined as those constraints placed on (or opportunities afforded) a vintner and the eventual flavors of his or her wine by the location in which that wine was grown. Several senses of terroir influence consistent with that definition will be explicated, each differing in scope and in the role assigned to grape variety and vine genetics. It will be argued that the notion of wine as exhibiting terroir character and tasters’ ability to discern characteristics causally associated with site are neither more nor less problematic than the analogous notion of vintage character or its identification as predicated on the influence of weather on vine metabolism, fruit maturation and ultimately flavor. It will be suggested that much more scientific research should be devoted to measuring how much or how little such ability tasters can develop, as opposed to imagine themselves possessing, because this will circumscribe investigations into how site influences flavor and determine how relevant place is to pedigree.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David Schildknecht

Wine Writer, The Wine Advocate and other wine publications, USA

Contact the author

Keywords

Touriga Nacional; Touriga Franca; Climate Change; Summer Stress; Douro Region; Morpho Anatomy; Biochemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Une méthode d’étude synthétique du paysage

a) wine, a qualitative and user-friendly product, favors a visual support, even for a scientific study because it refers to the image of the terroir, in particular by its visible landscape. b) the vineyard landscape, which is fairly open by definition, favors this type of approach. c) the framework of the Terroir Test conducted by the URVV (INRA – Angers) comprises 15 micro-plots of 100 strains, and requires at this scale precise surveys of the environment, hence systematic shots, of the center of the plot, over 360°, at 50 mm intervals, at 1.70 m from the ground and horizontally.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.