Terroir 2016 banner
IVES 9 IVES Conference Series 9 Talking about terroir

Talking about terroir

Abstract

When talking about terroir, scientists and lay wine tasters, very much including wine journalists and wine growers, too often talk past one another.

“Terroir” may be among the most irritatingly vague and slippery words in the wine growers’ and wine critic’s vocabulary, but scientists, too, seem conspicuously unwilling to render this notion more precise; and if a shared and mutually useful concept cannot be achieved, how can we reach genuine agreement or disagreement in our claims about terroir, let alone address or mitigate one another’s perplexity?

Moreover, it often appears as if parties to alleged explications of terroir fail even to agree on the phenomenon that demands explanation. Wine tasters are frustrated with scientists who make no attempt to account for but instead treat as implausible or debunk claims for organoleptic experience of wine as varying with regularity and predictability depending on site and soil type. Entire books have been written about vineyard geology under the rubric of terroir without accounting for how rocks might actually influence taste. Specialists often advise on where best to plant wine grapes seemingly oblivious that “best” can make sense only if location somehow ultimately influences taste. Yet scientists can be forgiven their frustration with and dismissals of utterly implausible pictures that wine tasters have painted for themselves about how soil and site might influence taste.

Examples will be offered of some common conceptual pitfalls into which both scientists and laity stumble when discussing “terroir.” Treating this term as by its nature evaluative undermines attempts to define site potential; treating it as encompassing anything that might impinge on the eventual character of wine including viticultural and cellar practices renders it so all-encompassing that it fails to mark any significant distinction. Positing something called “minerality in wine” trades on equivocation and conceptual muddle.

It will be proposed that “terroir” be defined as those constraints placed on (or opportunities afforded) a vintner and the eventual flavors of his or her wine by the location in which that wine was grown. Several senses of terroir influence consistent with that definition will be explicated, each differing in scope and in the role assigned to grape variety and vine genetics. It will be argued that the notion of wine as exhibiting terroir character and tasters’ ability to discern characteristics causally associated with site are neither more nor less problematic than the analogous notion of vintage character or its identification as predicated on the influence of weather on vine metabolism, fruit maturation and ultimately flavor. It will be suggested that much more scientific research should be devoted to measuring how much or how little such ability tasters can develop, as opposed to imagine themselves possessing, because this will circumscribe investigations into how site influences flavor and determine how relevant place is to pedigree.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David Schildknecht

Wine Writer, The Wine Advocate and other wine publications, USA

Contact the author

Keywords

Touriga Nacional; Touriga Franca; Climate Change; Summer Stress; Douro Region; Morpho Anatomy; Biochemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.