Terroir 2016 banner
IVES 9 IVES Conference Series 9 Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Abstract

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest. There is a great potential for Growth and development of grapes (Vitis vinefera L.) in the Pacific North West region of the United States. However, there are few studies that have focused on the development of a comprehensive spatial suitability system. The main objective of this study was to develop a spatial site selection system that can help select suitable areas for grapevine cultivation.

Several bio-climatic indices such as Growing Degree Days (GDD), Frost Free Days (FFD), Huglin Index (HI) were calculated for a period of 30 years using daily weather data obtained from the University of Idaho Gridded Surface Meteorological dataset. The soil data were obtained from the gSSURGO dataset and several properties such as soil depth, pH, available water holding capacity (AWC), and drainage class were extracted for the study area. The topographical data were obtained from the National Elevation dataset. The data were then reclassified using fuzzy logic and the soil, weather, and topographic suitability maps were developed. The final vineyard potential scores were obtained by combining the soil, weather, and topographic suitability. The potential scores had a range from 0 to 1, where 0 pertains to non-suitable areas and 1 refers to optimal sites. Consequently, the vineyard potential score for the vineyards that have been established in the state of Washington were obtained from the Crop Scape land cover maps and used as a measure of evaluation.

The spatial site selection system was able to classify the study area to 10 different regions based on their vineyard potential. The evaluation results indicated that 84% of the vineyards that are already established in the study area have a vineyard potential score ranging from 0.91 to 1. Another 15 % had a potential score ranging from 0.8 to 0.9. The results of this study can help decision makers, growers, and others with conducting a more precise land-use assessment for grapevine production.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Golnaz Badr

Department of Viticulture and Enology, Washington State University

Contact the author

Keywords

Terroir, wine, viticulture, spatial suitability, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal).

Selection of beneficial endophytes from Sicilian grapevine germplasm 

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT.

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.