Terroir 2016 banner
IVES 9 IVES Conference Series 9 Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Abstract

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest. There is a great potential for Growth and development of grapes (Vitis vinefera L.) in the Pacific North West region of the United States. However, there are few studies that have focused on the development of a comprehensive spatial suitability system. The main objective of this study was to develop a spatial site selection system that can help select suitable areas for grapevine cultivation.

Several bio-climatic indices such as Growing Degree Days (GDD), Frost Free Days (FFD), Huglin Index (HI) were calculated for a period of 30 years using daily weather data obtained from the University of Idaho Gridded Surface Meteorological dataset. The soil data were obtained from the gSSURGO dataset and several properties such as soil depth, pH, available water holding capacity (AWC), and drainage class were extracted for the study area. The topographical data were obtained from the National Elevation dataset. The data were then reclassified using fuzzy logic and the soil, weather, and topographic suitability maps were developed. The final vineyard potential scores were obtained by combining the soil, weather, and topographic suitability. The potential scores had a range from 0 to 1, where 0 pertains to non-suitable areas and 1 refers to optimal sites. Consequently, the vineyard potential score for the vineyards that have been established in the state of Washington were obtained from the Crop Scape land cover maps and used as a measure of evaluation.

The spatial site selection system was able to classify the study area to 10 different regions based on their vineyard potential. The evaluation results indicated that 84% of the vineyards that are already established in the study area have a vineyard potential score ranging from 0.91 to 1. Another 15 % had a potential score ranging from 0.8 to 0.9. The results of this study can help decision makers, growers, and others with conducting a more precise land-use assessment for grapevine production.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Golnaz Badr

Department of Viticulture and Enology, Washington State University

Contact the author

Keywords

Terroir, wine, viticulture, spatial suitability, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Grapevine productivity modelling in the Portuguese Douro Region

In Portugal, and particularly in the Demarcated Region of Douro (DDR), wine production has a great tradition, producing the unique and worldwide famous Port wine as well as other remarkably good table wines. In this study the impact of projected climate change to wine production is analysed for the DDR. A statistical grapevine yield model (GYM) is developed using climate parameters as predictors.

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Evaluation of field inoculation of Kocuria rhizophila and Streptomyces violaceoruber as biostimulants under water availability conditions in grapevines

Agricultural productivity must promote management systems that incorporate sustainability principles, and viticulture is no exception.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.