Terroir 2016 banner
IVES 9 IVES Conference Series 9 Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Abstract

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest. There is a great potential for Growth and development of grapes (Vitis vinefera L.) in the Pacific North West region of the United States. However, there are few studies that have focused on the development of a comprehensive spatial suitability system. The main objective of this study was to develop a spatial site selection system that can help select suitable areas for grapevine cultivation.

Several bio-climatic indices such as Growing Degree Days (GDD), Frost Free Days (FFD), Huglin Index (HI) were calculated for a period of 30 years using daily weather data obtained from the University of Idaho Gridded Surface Meteorological dataset. The soil data were obtained from the gSSURGO dataset and several properties such as soil depth, pH, available water holding capacity (AWC), and drainage class were extracted for the study area. The topographical data were obtained from the National Elevation dataset. The data were then reclassified using fuzzy logic and the soil, weather, and topographic suitability maps were developed. The final vineyard potential scores were obtained by combining the soil, weather, and topographic suitability. The potential scores had a range from 0 to 1, where 0 pertains to non-suitable areas and 1 refers to optimal sites. Consequently, the vineyard potential score for the vineyards that have been established in the state of Washington were obtained from the Crop Scape land cover maps and used as a measure of evaluation.

The spatial site selection system was able to classify the study area to 10 different regions based on their vineyard potential. The evaluation results indicated that 84% of the vineyards that are already established in the study area have a vineyard potential score ranging from 0.91 to 1. Another 15 % had a potential score ranging from 0.8 to 0.9. The results of this study can help decision makers, growers, and others with conducting a more precise land-use assessment for grapevine production.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Golnaz Badr

Department of Viticulture and Enology, Washington State University

Contact the author

Keywords

Terroir, wine, viticulture, spatial suitability, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).