Terroir 2016 banner
IVES 9 IVES Conference Series 9 Terroir effects from the reflectance spectra of the canopy of vineyards in four viticultural regions

Terroir effects from the reflectance spectra of the canopy of vineyards in four viticultural regions

Abstract

Knowledge of the reflectance spectrum of grape leaves is important to the identification of grape varieties in images of viticultural regions where several cultivars co-exist. As a non-destructive technique, spectroradiometry delivers reflectance spectra with high signal-to-noise ratios.

This work reports results from field measurements of the reflectance spectra of five grape varieties in the spectral range 450nm to 2500nm, performed in south Brazil. Four viticultural regions were visited, with different soils originated from basalt, granite, and sandstone. In vivo measurements of Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay and Italian Riesling were performed. All spectra were normalized to have unit area and were compared. The very high signal/noise ratio allowed the systematic detection of subtle spectral features of each variety, with intensities of the order of 10-4 to 10-5 with respect to the normalized reflectance range from 0 to 1. These spectral features were attributed to differentiation factors as the presence of pigments in leaves, which has an impact in leaf texture and so in infrared reflectance. Spectral differentiation due to terroir effects was also investigated.

The spectral database was subjected to statistical discriminant analysis to search for separation either of grape varieties and terroirs/regions. Grape varieties and terroirs were separated to accuracies of up to 100%. This methodology can be applied to zoning studies which look for typicity parameters; besides, a detailed knowledge of the spectral signatures of grape varieties can be relevant to the development of identification algorithms used to classify remote sensing images of viticultural regions where several cultivars are present, and to in-field inspections using radiometers.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Jorge Ricardo DUCATI (1), Magno G. BOMBASSARO (1), Diniz C. ARRUDA (1), Virindiana C. BORTOLOTTO (2), Rosemary HOFF (3)

(1) Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, CEP 91501-970 Porto Alegre, Brazil
(2) Instituto de Ciências Agrárias e Ambientais, Universidade Federal de Mato Grosso, Av. Alexandre Ferronato 1200, CEP 78557-267 Sinop, Brazil
(3) Centro Nacional de Pesquisas em Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento 515, CEP 95700-000 Bento Goncalves, Brazil

Contact the author

Keywords

Remote Sensing, Spectroradiometry, Soils, Reflectance, Classification

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2