Terroir 2016 banner
IVES 9 IVES Conference Series 9 Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Abstract

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

In order to investigate this matter, a trial was set comparing the agronomic behavior and grape composition, with particular regards to aromatic and phenolic compounds, of a Nebbiolo clonal selection (CVT 63) when grown in two locations environmentally different of Piedmont Region (North-west Italy): La Morra and Lessona, areas of production of the renowned “Barolo” and “Lessona” VQPRD wines respectively. These locations differ in terms of climate, soil texture, row exposition and sloping.

Agronomic performances of clone CVT 63, assessed over three growing seasons, differed very much depending on the environment, while grape composition (soluble solids, total flavonoids and total anthocyanins) resulted comparable between the two locations. The environmental imprint, however, was clearly present on some grape qualitative aspects such as the anthocyanin profile and the dotation in aromatic substances. Despite the similar amount of grape total anthocyanins assessed in the two sites, the grapes produced in Lessona, showed a profile characterized by an higher % of peonidin-3-glucoside (di-substituted anthocyanin) and a lower % of malvidin, petunidin and delfinidin-3-glucoside (tri-substituted anthocyanins).

The modifications in the profile due to different environments may have strong implications on the evolution of wine color, being peonidin-3-glucoside less stable to degradation during fermentation and wine ageing. In terms of aromatic substances, the grapes produced in La Morra resulted richer in benzenoids, terpenes and norisoprenoids, and this bound aroma dotation may give an important contribution to the intensity and complexity of wine bouquet. Our results confirmed the environmental impact on grape qualitative composition and the consequent potential imprinting of the “terroir” on the characteristics of Nebbiolo wines.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Franco MANNINI, Deborah SANTINI, Alessandra MOLLO

Institute of Sustainable Plant Protection, CNR, Unit of Grugliasco (TO), L.go Braccini 2., Italy

Contact the author

Keywords

grape, environment, Nebbiolo, phenols, aromas, clone

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Water retention properties of viticultural calcisols from D. O. P. Valdepeñas (Spain)

A good knowledge of the soil physicochemical properties, as well as its ability to retain and put the necessary water available to the plants, is essential when it comes at the design of an irrigation plan.