Terroir 2016 banner
IVES 9 IVES Conference Series 9 Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Abstract

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

In order to investigate this matter, a trial was set comparing the agronomic behavior and grape composition, with particular regards to aromatic and phenolic compounds, of a Nebbiolo clonal selection (CVT 63) when grown in two locations environmentally different of Piedmont Region (North-west Italy): La Morra and Lessona, areas of production of the renowned “Barolo” and “Lessona” VQPRD wines respectively. These locations differ in terms of climate, soil texture, row exposition and sloping.

Agronomic performances of clone CVT 63, assessed over three growing seasons, differed very much depending on the environment, while grape composition (soluble solids, total flavonoids and total anthocyanins) resulted comparable between the two locations. The environmental imprint, however, was clearly present on some grape qualitative aspects such as the anthocyanin profile and the dotation in aromatic substances. Despite the similar amount of grape total anthocyanins assessed in the two sites, the grapes produced in Lessona, showed a profile characterized by an higher % of peonidin-3-glucoside (di-substituted anthocyanin) and a lower % of malvidin, petunidin and delfinidin-3-glucoside (tri-substituted anthocyanins).

The modifications in the profile due to different environments may have strong implications on the evolution of wine color, being peonidin-3-glucoside less stable to degradation during fermentation and wine ageing. In terms of aromatic substances, the grapes produced in La Morra resulted richer in benzenoids, terpenes and norisoprenoids, and this bound aroma dotation may give an important contribution to the intensity and complexity of wine bouquet. Our results confirmed the environmental impact on grape qualitative composition and the consequent potential imprinting of the “terroir” on the characteristics of Nebbiolo wines.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Franco MANNINI, Deborah SANTINI, Alessandra MOLLO

Institute of Sustainable Plant Protection, CNR, Unit of Grugliasco (TO), L.go Braccini 2., Italy

Contact the author

Keywords

grape, environment, Nebbiolo, phenols, aromas, clone

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.