Terroir 2016 banner
IVES 9 IVES Conference Series 9 Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Abstract

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature. Our work aims to minimize these sources of variation by using a single combination of scion and rootstock. In addition, we maintain highly controlled fermentation conditions by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery. Grape clusters were hand-harvested from 10 vineyards comprising the same combination of scion clone, Pinot noir clone 667, and rootstock clone, 101-14 Mgt. The vineyards were located from as far south as Santa Maria, CA, USA to as far north as Mendocino, CA, USA (a distance of more than 650 km). American Viticultural Areas (AVAs) represented in this work include Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, and Mendocino. Because of the location of this conference, data will also be shared characterizing two wines made from the Willamette Valley AVA from the same Pinot noir clone 667 but on a different rootstock clone. The fruit from each vineyard was destemmed into the fermentation vessels and inoculated with the same strain of Saccharomyces cerevisiae yeast. These vessels offer a high degree of automated temperature control, facilitating relatively uniform fermentations across vineyard replicates and across vineyards. After primary fermentation, wines were inoculated with the same strain of malolactic bacteria. Upon completion of MLF, wines samples were obtained for analytical characterization.

In this presentation, we will share data characterizing wine volatile compounds by using an automated headspace solid-phase microextraction (HS-SPME) gas chromatography–mass spectrometry (GC-MS) method combined with synchronous selected ion monitoring (SIM)/scan detection. The chemical data were analyzed using an analysis of variance (ANOVA) measuring for the effects of vineyard. 45 volatile compounds were identified that significantly differentiated the wines. The compounds included terpenes, esters, norisoprenoids, organic acids, aldehydes, and alcohols. Principal component analysis (PCA) was used to characterize individual vineyards using only significant volatile compounds. AVAs were generally separated by their volatile compound profile, however, some vineyard locations within an AVA led to dramatically different volatile aroma profiles, suggesting that factors such as unique microclimates or soil conditions may have an effect. These details will be explored in future work as will the consistency of volatile compounds from these sites in subsequent vintages.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ron Runnebaum

Department of Viticulture & Enology and Department of Chemical Engineering & Materials Science, University of California-Davis, California, USA

Contact the author

Keywords

Terroir, wine, Pinot Noir, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

The influence of climate on the grapevine phenology and content of sugar and total acids in the must

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.