Terroir 2016 banner
IVES 9 IVES Conference Series 9 Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Abstract

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature. Our work aims to minimize these sources of variation by using a single combination of scion and rootstock. In addition, we maintain highly controlled fermentation conditions by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery. Grape clusters were hand-harvested from 10 vineyards comprising the same combination of scion clone, Pinot noir clone 667, and rootstock clone, 101-14 Mgt. The vineyards were located from as far south as Santa Maria, CA, USA to as far north as Mendocino, CA, USA (a distance of more than 650 km). American Viticultural Areas (AVAs) represented in this work include Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, and Mendocino. Because of the location of this conference, data will also be shared characterizing two wines made from the Willamette Valley AVA from the same Pinot noir clone 667 but on a different rootstock clone. The fruit from each vineyard was destemmed into the fermentation vessels and inoculated with the same strain of Saccharomyces cerevisiae yeast. These vessels offer a high degree of automated temperature control, facilitating relatively uniform fermentations across vineyard replicates and across vineyards. After primary fermentation, wines were inoculated with the same strain of malolactic bacteria. Upon completion of MLF, wines samples were obtained for analytical characterization.

In this presentation, we will share data characterizing wine volatile compounds by using an automated headspace solid-phase microextraction (HS-SPME) gas chromatography–mass spectrometry (GC-MS) method combined with synchronous selected ion monitoring (SIM)/scan detection. The chemical data were analyzed using an analysis of variance (ANOVA) measuring for the effects of vineyard. 45 volatile compounds were identified that significantly differentiated the wines. The compounds included terpenes, esters, norisoprenoids, organic acids, aldehydes, and alcohols. Principal component analysis (PCA) was used to characterize individual vineyards using only significant volatile compounds. AVAs were generally separated by their volatile compound profile, however, some vineyard locations within an AVA led to dramatically different volatile aroma profiles, suggesting that factors such as unique microclimates or soil conditions may have an effect. These details will be explored in future work as will the consistency of volatile compounds from these sites in subsequent vintages.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ron Runnebaum

Department of Viticulture & Enology and Department of Chemical Engineering & Materials Science, University of California-Davis, California, USA

Contact the author

Keywords

Terroir, wine, Pinot Noir, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.

A worldwide perspective on viticultural zoning

Cet article répertorie les intérêts et problèmes du zonage viticole dans une perspective mondiale. Le zonage est un besoin pour chacun des vignobles mondiaux où il correspond à des applications, définitions et approches variées. Les objectifs du zonage changent de concert avec les besoins du marché mondial du vin, qui ne cesse de croître.