Terroir 2016 banner
IVES 9 IVES Conference Series 9 Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Abstract

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature. Our work aims to minimize these sources of variation by using a single combination of scion and rootstock. In addition, we maintain highly controlled fermentation conditions by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery. Grape clusters were hand-harvested from 10 vineyards comprising the same combination of scion clone, Pinot noir clone 667, and rootstock clone, 101-14 Mgt. The vineyards were located from as far south as Santa Maria, CA, USA to as far north as Mendocino, CA, USA (a distance of more than 650 km). American Viticultural Areas (AVAs) represented in this work include Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, and Mendocino. Because of the location of this conference, data will also be shared characterizing two wines made from the Willamette Valley AVA from the same Pinot noir clone 667 but on a different rootstock clone. The fruit from each vineyard was destemmed into the fermentation vessels and inoculated with the same strain of Saccharomyces cerevisiae yeast. These vessels offer a high degree of automated temperature control, facilitating relatively uniform fermentations across vineyard replicates and across vineyards. After primary fermentation, wines were inoculated with the same strain of malolactic bacteria. Upon completion of MLF, wines samples were obtained for analytical characterization.

In this presentation, we will share data characterizing wine volatile compounds by using an automated headspace solid-phase microextraction (HS-SPME) gas chromatography–mass spectrometry (GC-MS) method combined with synchronous selected ion monitoring (SIM)/scan detection. The chemical data were analyzed using an analysis of variance (ANOVA) measuring for the effects of vineyard. 45 volatile compounds were identified that significantly differentiated the wines. The compounds included terpenes, esters, norisoprenoids, organic acids, aldehydes, and alcohols. Principal component analysis (PCA) was used to characterize individual vineyards using only significant volatile compounds. AVAs were generally separated by their volatile compound profile, however, some vineyard locations within an AVA led to dramatically different volatile aroma profiles, suggesting that factors such as unique microclimates or soil conditions may have an effect. These details will be explored in future work as will the consistency of volatile compounds from these sites in subsequent vintages.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ron Runnebaum

Department of Viticulture & Enology and Department of Chemical Engineering & Materials Science, University of California-Davis, California, USA

Contact the author

Keywords

Terroir, wine, Pinot Noir, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Evolution of the crown procyanidins during wine making and aging in bottle

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process,

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Infection of the grapes with Botrytis cinerea has a tremendous impact on the resulting crop yield and quality. Well-known problems that are associated with B. cinerea are specific off-flavors, poor filterability, and brownish color in white wines. The development of a B. cinerea infection strongly depends on weather conditions and is highly variable through different vintages. Typical control measures include defoliation and the use of fungicides, which involves high personnel and material costs. They also involve a great risk, especially since the effectiveness and time point of these treatments are difficult to predict.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.